One-way Function - Theoretical Definition

Theoretical Definition

A function f: {0, 1}* → {0, 1}* is one-way if f can be computed by a polynomial time algorithm, but for every randomized algorithm A which runs in time polynomial in |x|, every polynomial p(n), and all sufficiently large n

where the probability is over the choice of x from the uniform distribution on {0, 1}n, and the randomness of A.

Note that, by this definition, the function must be "hard to invert" in the average-case, rather than worst-case sense. This is different from much of complexity theory (e.g., NP-hardness), where the term "hard" is meant in the worst-case.

It is not sufficient to make a function "lossy" (not one-to-one) to have a one-way function. In particular, the function which outputs the string of n zeros on any input of length n is not a one-way function. The reason is that an algorithm A which just outputs any string of length n on input f(x) does find a proper preimage of the output, even if it is not the input which was originally used to find the output string.

Read more about this topic:  One-way Function

Famous quotes containing the words theoretical and/or definition:

    The desire to serve the common good must without fail be a requisite of the soul, a necessity for personal happiness; if it issues not from there, but from theoretical or other considerations, it is not at all the same thing.
    Anton Pavlovich Chekhov (1860–1904)

    It is very hard to give a just definition of love. The most we can say of it is this: that in the soul, it is a desire to rule; in the spirit, it is a sympathy; and in the body, it is but a hidden and subtle desire to possess—after many mysteries—what one loves.
    François, Duc De La Rochefoucauld (1613–1680)