Perfect Secrecy
One-time pads are "information-theoretically secure" in that the encrypted message (i.e., the ciphertext) provides no information about the original message to a cryptanalyst (except the maximum possible length of the message). This is a very strong notion of security first developed during WWII by Claude Shannon and proved, mathematically, to be true of the one-time pad by Shannon about the same time. His result was published in the Bell Labs Technical Journal in 1949. Properly used one-time pads are secure in this sense even against adversaries with infinite computational power.
Claude Shannon proved, using information theory considerations, that the one-time pad has a property he termed perfect secrecy; that is, the ciphertext C gives absolutely no additional information about the plaintext. This is because, given a truly random key which is used only once, a ciphertext can be translated into any plaintext of the same length, and all are equally likely. Thus, the a priori probability of a plaintext message M is the same as the a posteriori probability of a plaintext message M given the corresponding ciphertext. Mathematically, this is expressed as, where is the entropy of the plaintext and is the conditional entropy of the plaintext given the ciphertext C. Perfect secrecy is a strong notion of cryptanalytic difficulty.
Conventional symmetric encryption algorithms use complex patterns of substitution and transpositions. For the best of these currently in use, it is not known whether there can be a cryptanalytic procedure which can reverse (or, usefully, partially reverse) these transformations without knowing the key used during encryption. Asymmetric encryption algorithms depend on mathematical problems that are thought to be difficult to solve, such as integer factorization and discrete logarithms. However there is no proof that these problems are hard and a mathematical breakthrough could make existing systems vulnerable to attack.
Read more about this topic: One-time Pad
Famous quotes containing the words perfect and/or secrecy:
“The perfect God in his revelations of himself has never got to the length of one such proposition as you, his prophets, state.”
—Henry David Thoreau (18171862)
“Nowadays the host does not admit you to his hearth, but has got the mason to build one for yourself somewhere in his alley, and hospitality is the art of keeping you at the greatest distance. There is as much secrecy about the cooking as if he had a design to poison you.”
—Henry David Thoreau (18171862)