One-parameter Group - Physics

Physics

In physics, one-parameter groups describe dynamical systems. Furthermore, whenever a system of physical laws admits a one-parameter group of differentiable symmetries, then there is a conserved quantity, by Noether's theorem.

In the study of spacetime the use of the unit hyperbola to calibrate spacio-temporal measurements has become common since Hermann Minkowski discussed it in 1908. The principle of relativity was reduced to arbitrariness of which diameter of the unit hyperbola was used to determine a world-line. Using the parametrization of the hyperbola with hyperbolic angle, the theory of special relativity provided a calculus of relative motion with the one-parameter group indexed by rapidity. The rapidity replaces the velocity in kinematics and dynamics of relativity theory. Since rapidity is unbounded, the one-parameter group it stands upon is non-compact. The rapidity concept was introduced by E.T. Whittaker in 1910, and named by Alfred Robb the next year. The rapidity parameter amounts to the length of a hyperbolic versor, a concept of the nineteenth century. Mathematical physicists James Cockle, William Kingdon Clifford, and Alexander Macfarlane had all employed in their writings an equivalent mapping of the Cartesian plane by operator (cosh a + r sinh a), where a is the hyperbolic angle and r 2 = +1.

Read more about this topic:  One-parameter Group

Famous quotes containing the word physics:

    Mathematics should be mixed not only with physics but with ethics.
    Henry David Thoreau (1817–1862)

    But this invites the occult mind,
    Cancels our physics with a sneer,
    And spatters all we knew of denouement
    Across the expedient and wicked stones.
    Karl Shapiro (b. 1913)

    ... it is as true in morals as in physics that all force is imperishable; therefore the consequences of a human action never cease.
    Tennessee Claflin (1846–1923)