Discussion
That is, we start knowing only that
- φ (s + t) = φ(s)φ(t)
where s, t are the 'parameters' of group elements in G. We may have
- φ(s) = e, the identity element in G,
for some s ≠ 0. This happens for example if G is the unit circle and
- φ(s) = eis.
In that case the kernel of φ consists of the integer multiples of 2π.
The action of a one-parameter group on a set is known as a flow.
A technical complication is that φ(R) as a subspace of G may carry a topology that is coarser than that on R; this may happen in cases where φ is injective. Think for example of the case where G is a torus T, and φ is constructed by winding a straight line round T at an irrational slope.
Therefore a one-parameter group or one-parameter subgroup has to be distinguished from a group or subgroup itself, for the three reasons
- it has a definite parametrization,
- the group homomorphism may not be injective, and
- the induced topology may not be the standard one of the real line.
Read more about this topic: One-parameter Group
Famous quotes containing the word discussion:
“Power is action; the electoral principle is discussion. No political action is possible when discussion is permanently established.”
—Honoré De Balzac (17991850)
“We should seek by all means in our power to avoid war, by analysing possible causes, by trying to remove them, by discussion in a spirit of collaboration and good will. I cannot believe that such a programme would be rejected by the people of this country, even if it does mean the establishment of personal contact with the dictators.”
—Neville Chamberlain (18691940)
“There are answers which, in turning away wrath, only send it to the other end of the room, and to have a discussion coolly waived when you feel that justice is all on your own side is even more exasperating in marriage than in philosophy.”
—George Eliot [Mary Ann (or Marian)