History
The old quantum theory was sparked by the work of Max Planck on the emission and absorption of light, and began in earnest after the work of Albert Einstein on the specific heats of solids. Einstein, followed by Debye, applied quantum principles to the motion of atoms, explaining the specific heat anomaly.
In 1913, Niels Bohr identified the correspondence principle and used it to formulate a model of the hydrogen atom which explained the line spectrum. In the next few years Arnold Sommerfeld extended the quantum rule to arbitrary integrable systems making use of the principle of adiabatic invariance of the quantum numbers introduced by Lorentz and Einstein. Sommerfeld's model was much closer to the modern quantum mechanical picture than Bohr's.
Throughout the 1910s and well into the 1920s, many problems were attacked using the old quantum theory with mixed results. Molecular rotation and vibration spectra were understood and the electron's spin was discovered, leading to the confusion of half-integer quantum numbers. Max Planck introduced the zero point energy and Arnold Sommerfeld semiclassically quantized the relativistic hydrogen atom. Hendrik Kramers explained the Stark effect. Bose and Einstein gave the correct quantum statistics for photons.
Kramers gave a prescription for calculating transition probabilities between quantum states in terms of Fourier components of the motion, ideas which were extended in collaboration with Werner Heisenberg to a semiclassical matrix-like description of atomic transition probabilities. Heisenberg went on to reformulate all of quantum theory in terms of a version of these transition matrices, creating matrix mechanics.
In 1924, Louis de Broglie introduced the wave theory of matter, which was extended to a semiclassical equation for matter waves by Albert Einstein a short time later. In 1926 Erwin Schrödinger found a completely quantum mechanical wave-equation, which reproduced all the successes of the old quantum theory without ambiguities and inconsistencies. Schrödinger's wave mechanics developed separately from matrix mechanics until Schrödinger and others proved that the two methods predicted the same experimental consequences. Paul Dirac later proved in 1926 that both methods can be obtained from a more general method called transformation theory.
Matrix mechanics and wave mechanics put an end to the era of the old-quantum theory.
Read more about this topic: Old Quantum Theory
Famous quotes containing the word history:
“The history of all hitherto existing society is the history of class struggles.”
—Karl Marx (18181883)
“Gossip is charming! History is merely gossip. But scandal is gossip made tedious by morality.”
—Oscar Wilde (18541900)
“The history of progress is written in the blood of men and women who have dared to espouse an unpopular cause, as, for instance, the black mans right to his body, or womans right to her soul.”
—Emma Goldman (18691940)