The Paradox
The paradox is that a static, infinitely old universe with an infinite number of stars distributed in an infinitely large space would be bright rather than dark.
To show this, we divide the universe into a series of concentric shells, 1 light year thick (say). Thus, a certain number of stars will be in the shell 1,000,000,000 to 1,000,000,001 light years away, say. If the universe is homogeneous at a large scale, then there would be four times as many stars in a second shell between 2,000,000,000 to 2,000,000,001 light years away. However, the second shell is twice as far away, so each star in it would appear four times dimmer than the first shell. Thus the total light received from the second shell is the same as the total light received from the first shell.
Thus each shell of a given thickness will produce the same net amount of light regardless of how far away it is. That is, the light of each shell adds to the total amount. Thus the more shells, the more light. And with infinitely many shells there would be a bright night sky.
Dark clouds could obstruct the light. But in that case the clouds would heat up, until they were as hot as stars, and then radiate the same amount of light.
Kepler saw this as an argument for a finite observable universe, or at least for a finite number of stars. In general relativity theory, it is still possible for the paradox to hold in a finite universe: though the sky would not be infinitely bright, every point in the sky would still be like the surface of a star.
Read more about this topic: Olbers' Paradox
Famous quotes containing the word paradox:
“...This
is the paradox of vision:
Sharp perception softens
our existence in the world.”
—Susan Griffin (b. 1943)
“To make advice agreeable, try paradox or rhyme.”
—Mason Cooley (b. 1927)