Oil Refinery - Corrosion Problems and Prevention

Corrosion Problems and Prevention

Petroleum refineries run as efficiently as possible to reduce costs. One major factor that decreases efficiency is corrosion of the metallic components found throughout refining process. Corrosion causes the failure of equipment items as well as dictating the maintenance schedule of the refinery, during which part or all of the refinery must be shut down. The corrosion-related direct costs in the U.S. petroleum industry as of 1996 was estimated as US$3.7 billion per year.

Corrosion occurs in various forms in the refining process, such as pitting corrosion from water droplets, embrittlement from hydrogen, and stress corrosion cracking from sulfide attack. From a materials standpoint, carbon steel is used for upwards of 80 per cent of refinery components, which is beneficial due to its low cost. Carbon steel is resistant to the most common forms of corrosion, particularly from hydrocarbon impurities at temperatures below 205 °C, but other corrosive chemicals and environments prevent its use everywhere. Common replacement materials are low alloy steels containing chromium and molybdenum, with stainless steels containing more chromium dealing with more corrosive environments. More expensive materials commonly used are nickel, titanium, and copper alloys. These are primarily saved for the most problematic areas where extremely high temperatures or very corrosive chemicals are present.

Corrosion is fought by a complex system of monitoring, preventative repairs and careful use of materials. Monitoring methods include both off-line checks taken during maintenance and on-line monitoring. Off-line checks measure corrosion after it has occurred, telling the engineer when equipment must be replaced based on the historical information he has collected. This is referred to as preventative management.

On-line systems are a more modern development, and are revolutionizing the way corrosion is approached. There are several types of on-line corrosion monitoring technologies such as linear polarization resistance, electrochemical noise and electrical resistance. On-Line monitoring has generally had slow reporting rates in the past (minutes or hours) and been limited by process conditions and sources of error but newer technologies can report rates up to twice per minute with much higher accuracy (referred to as real-time monitoring). This allows process engineers to treat corrosion as another process variable that can be optimized in the system. Immediate responses to process changes allow the control of corrosion mechanisms, so they can be minimized while also maximizing production output. In an ideal situation having on-line corrosion information that is accurate and real-time will allow conditions that cause high corrosion rates to be identified and reduced. This is known as predictive management.

Materials methods include selecting the proper material for the application. In areas of minimal corrosion, cheap materials are preferable, but when bad corrosion can occur, more expensive but longer lasting materials should be used. Other materials methods come in the form of protective barriers between corrosive substances and the equipment metals. These can be either a lining of refractory material such as standard Portland cement or other special acid-resistant cements that are shot onto the inner surface of the vessel. Also available are thin overlays of more expensive metals that protect cheaper metal against corrosion without requiring lots of material.

Read more about this topic:  Oil Refinery

Famous quotes containing the words problems and/or prevention:

    In many ways, life becomes simpler [for young adults]. . . . We are expected to solve only a finite number of problems within a limited range of possible solutions. . . . It’s a mental vacation compared with figuring out who we are, what we believe, what we’re going to do with our talents, how we’re going to solve the social problems of the globe . . .and what the perfect way to raise our children will be.
    Roger Gould (20th century)

    ... if this world were anything near what it should be there would be no more need of a Book Week than there would be a of a Society for the Prevention of Cruelty to Children.
    Dorothy Parker (1893–1967)