Octahedral Molecular Geometry

In chemistry, octahedral molecular geometry describes the shape of compounds wherein six atoms or groups of atoms or ligands are symmetrically arranged around a central atom, defining the vertices of an octahedron. The octahedron has eight faces, hence the prefix octa. The octahedron is one of the Platonic solids, although octahedral molecules typically have an atom in their centre and no bonds between the ligand atoms. A perfect octahedron belongs to the point group Oh. Examples of octahedral compounds are sulfur hexafluoride SF6 and molybdenum hexacarbonyl Mo(CO)6. The term "octahedral" is used somewhat loosely by chemists, focusing on the geometry of the bonds to the central atom and not considering differences among the ligands themselves. For example, 3+, which is not octahedral in the mathematical sense due to the orientation of the N-H bonds, is referred to as octahedral.

The concept of octahedral coordination geometry was developed by Alfred Werner to explain the stoichiometries and isomerism in coordination compounds. His insight allowed chemists to rationalize the number of isomers of coordination compounds. Octahedral transition-metal complexes containing amines and simple anions are often referred to Werner-type complexes.

Read more about Octahedral Molecular Geometry:  Isomerism in Octahedral Complexes, Trigonal Prismatic Geometry, Splitting of D-orbitals in Octahedral Complexes, Reactions

Famous quotes containing the word geometry:

    The geometry of landscape and situation seems to create its own systems of time, the sense of a dynamic element which is cinematising the events of the canvas, translating a posture or ceremony into dynamic terms. The greatest movie of the 20th century is the Mona Lisa, just as the greatest novel is Gray’s Anatomy.
    —J.G. (James Graham)