Ocean Acidification - Calcification

Calcification

Changes in ocean chemistry can have extensive direct and indirect effects on organisms and their habitats. One of the most important repercussions of increasing ocean acidity relates to the production of shells and plates out of calcium carbonate (CaCO3). This process is called calcification and is important to the biology and survival of a wide range of marine organisms. Calcification involves the precipitation of dissolved ions into solid CaCO3 structures, such as coccoliths. After they are formed, such structures are vulnerable to dissolution unless the surrounding seawater contains saturating concentrations of carbonate ions. The saturation state of seawater for a mineral (known as Ω) is a measure of the thermodynamic potential for the mineral to form or to dissolve, and is described by the following equation:

Here Ω is the product of the concentrations (or activities) of the reacting ions that form the mineral (Ca2+ and CO2−
3), divided by the product of the concentrations of those ions when the mineral is at equilibrium (Ksp), that is, when the mineral is neither forming nor dissolving. In seawater, a natural horizontal boundary is formed as a result of temperature, pressure, and depth, and is known as the saturation horizon, or lysocline. Above this saturation horizon, Ω has a value greater than 1, and CaCO3 does not readily dissolve. Most calcifying organisms live in such waters. Below this depth, Ω has a value less than 1, and CaCO3 will dissolve. However, if its production rate is high enough to offset dissolution, CaCO3 can still occur where Ω is less than 1. The carbonate compensation depth occurs at the depth in the ocean where production is exceeded by dissolution.

As shown in the Bjerrum plot, along with the change in pH, adding extra CO2 to the oceans also changes the oceans' concentrations of the different forms of dissolved inorganic carbon. There is a decrease in the concentration of CO32−, which decreases Ω, and hence makes CaCO3 dissolution more likely.

Calcium carbonate occurs in two common polymorphs: aragonite and calcite. Aragonite is much more soluble than calcite, with the result that the aragonite saturation horizon is always nearer to the surface than the calcite saturation horizon. This also means that those organisms that produce aragonite may possibly be more vulnerable to changes in ocean acidity than those that produce calcite. Increasing CO2 levels and the resulting lower pH of seawater decreases the saturation state of CaCO3 and raises the saturation horizons of both forms closer to the surface. This decrease in saturation state is believed to be one of the main factors leading to decreased calcification in marine organisms, as it has been found that the inorganic precipitation of CaCO3 is directly proportional to its saturation state.

Read more about this topic:  Ocean Acidification