Obsidian Hydration Dating - Limitations

Limitations

Several factors complicate simple correlation of obsidian hydration band thickness with absolute age. Temperature is known to speed up the hydration process. Thus, artifacts exposed to higher temperatures, for example by being at lower elevation, seem to hydrate faster. As well, obsidian chemistry, including the intrinsic water content, seems to affect the rate of hydration. Once an archeologist can control for the geochemical signature of the obsidian (e.g., the "source") and temperature (usually approximated using an "effective hydration temperature" or EHT coefficient), he or she may be able to date the artifact using the obsidian hydration technique. Water vapor pressure may also affect the rate of obsidian hydration.

The reliability of the method based on Friedman’s empirical age equation (x²=kt, where x is the thickness of the hydration rim, k is the diffusion coefficient, and t is the time) is questioned from several grounds regarding temperature dependence, square root of time and determination of diffusion rate per sample and per site, apart of some successful attempts on the procedure and applications.

Several commercial companies and university laboratories provide obsidian hydration services.

Read more about this topic:  Obsidian Hydration Dating

Famous quotes containing the word limitations:

    That all may be so, but when I begin to exercise that power I am not conscious of the power, but only of the limitations imposed on me.
    William Howard Taft (1857–1930)

    Much of what contrives to create critical moments in parenting stems from a fundamental misunderstanding as to what the child is capable of at any given age. If a parent misjudges a child’s limitations as well as his own abilities, the potential exists for unreasonable expectations, frustration, disappointment and an unrealistic belief that what the child really needs is to be punished.
    Lawrence Balter (20th century)

    The limitations of pleasure cannot be overcome by more pleasure.
    Mason Cooley (b. 1927)