Observable Universe

In Big Bang cosmology, the observable universe consists of the galaxies and other matter that can, in principle, be observed from Earth in the present day—because light (or other signals) from those objects has had time to reach the Earth since the beginning of the cosmological expansion. Assuming the universe is isotropic, the distance to the edge of the observable universe is roughly the same in every direction. That is, the observable universe is a spherical volume (a ball) centered on the observer, regardless of the shape of the universe as a whole. Every location in the universe has its own observable universe, which may or may not overlap with the one centered on Earth.

The word observable used in this sense does not depend on whether modern technology actually permits detection of radiation from an object in this region (or indeed on whether there is any radiation to detect). It simply indicates that it is possible in principle for light or other signals from the object to reach an observer on Earth. In practice, we can see light only from as far back as the time of photon decoupling in the recombination epoch. That is when particles were first able to emit photons that were not quickly re-absorbed by other particles. Before then, the universe was filled with a plasma that was opaque to photons.

The surface of last scattering is the collection of points in space at the exact distance that photons from the time of photon decoupling just reach us today. These are the photons we detect today as cosmic microwave background radiation (CMBR). However, it may be possible in the future to observe the still older neutrino background, or even more distant events via gravitational waves (which also should move at the speed of light). Sometimes astrophysicists distinguish between the visible universe, which includes only signals emitted since recombination—and the observable universe, which includes signals since the beginning of the cosmological expansion (the Big Bang in traditional cosmology, the end of the inflationary epoch in modern cosmology). According to calculations, the comoving distance (current proper distance) to particles from the CMBR, which represent the radius of the visible universe, is about 14.0 billion parsecs (about 45.7 billion light years), while the comoving distance to the edge of the observable universe is about 14.3 billion parsecs (about 46.6 billion light years), about 2% larger.

The age of the universe is about 13.75 billion years, but due to the expansion of space humans are observing objects that were originally much closer but are now considerably farther away (as defined in terms of cosmological proper distance, which is equal to the comoving distance at the present time) than a static 13.75 billion light-years distance. The diameter of the observable universe is estimated at about 28 billion parsecs (93 billion light-years), putting the edge of the observable universe at about 46–47 billion light-years away.

Read more about Observable Universe:  The Universe Versus The Observable Universe, Size, Large-scale Structure, Matter Content, Mass, Most Distant Objects, Particle Horizon

Famous quotes containing the words observable and/or universe:

    Every living language, like the perspiring bodies of living creatures, is in perpetual motion and alteration; some words go off, and become obsolete; others are taken in, and by degrees grow into common use; or the same word is inverted to a new sense or notion, which in tract of time makes an observable change in the air and features of a language, as age makes in the lines and mien of a face.
    Richard Bentley (1662–1742)

    The universe is not rough-hewn, but perfect in its details. Nature will bear the closest inspection; she invites us to lay our eye level with the smallest leaf, and take an insect view of its plain. She has no interstices; every part is full of life.
    Henry David Thoreau (1817–1862)