Laser Physics
In laser physics, the numerical aperture is defined slightly differently. Laser beams spread out as they propagate, but slowly. Far away from the narrowest part of the beam, the spread is roughly linear with distance—the laser beam forms a cone of light in the "far field". The relation used to define the NA of the laser beam is the same as that used for an optical system,
but θ is defined differently. Laser beams typically do not have sharp edges like the cone of light that passes through the aperture of a lens does. Instead, the irradiance falls off gradually away from the center of the beam. It is very common for the beam to have a Gaussian profile. Laser physicists typically choose to make θ the divergence of the beam: the far-field angle between the propagation direction and the distance from the beam axis for which the irradiance drops to 1/e2 times the wavefront total irradiance. The NA of a Gaussian laser beam is then related to its minimum spot size by
where λ0 is the vacuum wavelength of the light, and 2w0 is the diameter of the beam at its narrowest spot, measured between the 1/e2 irradiance points ("Full width at e−2 maximum of the intensity"). This means that a laser beam that is focused to a small spot will spread out quickly as it moves away from the focus, while a large-diameter laser beam can stay roughly the same size over a very long distance.
Read more about this topic: Numerical Aperture
Famous quotes containing the word physics:
“Although philosophers generally believe in laws and deny causes, explanatory practice in physics is just the reverse.”
—Nancy Cartwright (b. 1945)