Numeral System - Types

Types

The most commonly used system of numerals is known as Arabic numerals or Hindu-Arabic numerals. Two Indian mathematicians are credited with developing them. Aryabhata of Kusumapura developed the place-value notation in the 5th century and a century later Brahmagupta introduced the symbol for zero. The numeral system and the zero concept, developed by the Hindus in India slowly spread to other surrounding countries due to their commercial and military activities with India. The Arabs adopted it and modified them. Even today, the Arabs called the numerals they use 'Rakam Al-Hind' or the Hindu numeral system. The Arabs translated Hindu texts on numerology and spread it to the western world due to their trade links with them. The Western world modified them and called them the Arabic numerals, as they learnt from them. Hence the current western numeral system is the modified version of the Hindu numeral system developed in India. It also exhibits a great similarity to the Sanskrit-Devanagari notation, which is still used in India.

The simplest numeral system is the unary numeral system, in which every natural number is represented by a corresponding number of symbols. If the symbol / is chosen, for example, then the number seven would be represented by ///////. Tally marks represent one such system still in common use. The unary system is only useful for small numbers, although it plays an important role in theoretical computer science. Elias gamma coding, which is commonly used in data compression, expresses arbitrary-sized numbers by using unary to indicate the length of a binary numeral.

The unary notation can be abbreviated by introducing different symbols for certain new values. Very commonly, these values are powers of 10; so for instance, if / stands for one, − for ten and + for 100, then the number 304 can be compactly represented as +++ //// and the number 123 as + − − /// without any need for zero. This is called sign-value notation. The ancient Egyptian numeral system was of this type, and the Roman numeral system was a modification of this idea.

More useful still are systems which employ special abbreviations for repetitions of symbols; for example, using the first nine letters of the alphabet for these abbreviations, with A standing for "one occurrence", B "two occurrences", and so on, one could then write C+ D/ for the number 304. This system is used when writing Chinese numerals and other East Asian numerals based on Chinese. The number system of the English language is of this type ("three hundred four"), as are those of other spoken languages, regardless of what written systems they have adopted. However, many languages use mixtures of bases, and other features, for instance 79 in French is soixante dix-neuf (60+10+9) and in Welsh is pedwar ar bymtheg a thrigain (4+(5+10)+(3 × 20)) or (somewhat archaic) pedwar ugain namyn un (4 × 20 − 1). In English, one could say "four score less one", as in the famous Gettysburg Address representing 87 as "four score and seven years ago".

More elegant is a positional system, also known as place-value notation. Again working in base 10, ten different digits 0, ..., 9 are used and the position of a digit is used to signify the power of ten that the digit is to be multiplied with, as in 304 = 3×100 + 0×10 + 4×1 or more precisely 3×102 + 0×101 + 4×100. Note that zero, which is not needed in the other systems, is of crucial importance here, in order to be able to "skip" a power. The Hindu-Arabic numeral system, which originated in India and is now used throughout the world, is a positional base 10 system.

Arithmetic is much easier in positional systems than in the earlier additive ones; furthermore, additive systems need a large number of different symbols for the different powers of 10; a positional system needs only ten different symbols (assuming that it uses base 10).

The numerals used when writing numbers with digits or symbols can be divided into two types that might be called the arithmetic numerals 0,1,2,3,4,5,6,7,8,9 and the geometric numerals 1,10,100,1000,10000... respectively. The sign-value systems use only the geometric numerals and the positional systems use only the arithmetic numerals. The sign-value system does not need arithmetic numerals because they are made by repetition (except for the Ionic system), and the positional system does not need geometric numerals because they are made by position. However, the spoken language uses both arithmetic and geometric numerals.

In certain areas of computer science, a modified base-k positional system is used, called bijective numeration, with digits 1, 2, ..., k (k ≥ 1), and zero being represented by an empty string. This establishes a bijection between the set of all such digit-strings and the set of non-negative integers, avoiding the non-uniqueness caused by leading zeros. Bijective base-k numeration is also called k-adic notation, not to be confused with p-adic numbers. Bijective base-1 is the same as unary.

Read more about this topic:  Numeral System

Famous quotes containing the word types:

    The bourgeoisie loves so-called “positive” types and novels with happy endings since they lull one into thinking that it is fine to simultaneously acquire capital and maintain one’s innocence, to be a beast and still be happy.
    Anton Pavlovich Chekhov (1860–1904)

    ... there are two types of happiness and I have chosen that of the murderers. For I am happy. There was a time when I thought I had reached the limit of distress. Beyond that limit, there is a sterile and magnificent happiness.
    Albert Camus (1913–1960)

    If there is nothing new on the earth, still the traveler always has a resource in the skies. They are constantly turning a new page to view. The wind sets the types on this blue ground, and the inquiring may always read a new truth there.
    Henry David Thoreau (1817–1862)