Uses
Null sets play a key role in the definition of the Lebesgue integral: if functions f and g are equal except on a null set, then f is integrable if and only if g is, and their integrals are equal.
A measure in which all subsets of null sets are measurable is complete. Any non-complete measure can be completed to form a complete measure by asserting that subsets of null sets have measure zero. Lebesgue measure is an example of a complete measure; in some constructions, it's defined as the completion of a non-complete Borel measure.
Read more about this topic: Null Set
Related Subjects
Related Phrases
Related Words