Shell Model
According to the shell model, protons or neutrons tend to form pairs of opposite total angular momentum. Therefore the magnetic moment of a nucleus with even numbers of both protons and neutrons is zero, while that of a nucleus with an odd number of protons and even number of neutrons (or vice versa) will have to be that of the "last", unpaired proton (or neutron). For a nucleus with odd numbers of both protons and neutrons, the total magnetic moment will be some combination of the magnetic moments of both of the "last", unpaired proton and neutron.
Nuclear magnetic moment is only partly predicted by simple versions of the shell model. The magnetic moment is calculated through j, l and s of the "last" nucleon, but nuclei are not in states of well defined l and s. Furthermore, for odd-odd nuclei, one has to consider the two "last" nucleons, as in deuterium. Therefore there are several possible answers for the nuclear magnetic moment, one for each possible combined l and s state, and the real state of the nucleus is a superposition of them. Thus the real (measured) nuclear magnetic moment is somewhere in between the possible answers.
Read more about this topic: Nuclear Magnetic Moment
Famous quotes containing the words shell and/or model:
“We want some coat woven of elastic steel, stout as the first, and limber as the second. We want a ship in these billows we inhabit. An angular, dogmatic house would be rent to chips and splinters, in this storm of many elements. No, it must be tight, and fit to the form of man, to live at all; as a shell is the architecture of a house founded on the sea.”
—Ralph Waldo Emerson (18031882)
“Research shows clearly that parents who have modeled nurturant, reassuring responses to infants fears and distress by soothing words and stroking gentleness have toddlers who already can stroke a crying childs hair. Toddlers whose special adults model kindliness will even pick up a cookie dropped from a peers high chair and return it to the crying peer rather than eat it themselves!”
—Alice Sterling Honig (20th century)