Nuclear Power Plants and Control of Chain Reactions
Chain reactions naturally give rise to reaction rates that grow (or shrink) exponentially, whereas a nuclear power reactor needs to be able to hold the reaction rate reasonably constant. To maintain this control, the chain reaction criticality must have a slow enough time-scale to permit intervention by additional effects (e.g., mechanical control rods or thermal expansion). Consequently, all nuclear power reactors (even fast-neutron reactors) rely on delayed neutrons for their criticality. An operating nuclear power reactor fluctuates between being slightly subcritical and slightly delayed-supercritical, but must always remain below prompt-critical.
It is impossible for a nuclear power plant to undergo a nuclear chain reaction that results in an explosion of power comparable with a nuclear weapon, but even low-powered explosions due to uncontrolled chain reactions, that would be considered "fizzles" in a bomb, may still cause considerable damage and meltdown in a reactor. For example, the Chernobyl disaster involved a runaway chain reaction but the result was a low-powered steam explosion from the relatively small release of heat, as compared with a bomb. However, the reactor complex was destroyed by the heat, as well as by ordinary burning of the graphite exposed to air. Such steam explosions would be typical of the very diffuse assembly of materials in a nuclear reactor, even under the worst conditions.
In addition, other steps can be taken for safety. For example, power plants licensed in the United States require a negative void coefficient of reactivity (this means that if water is removed from the reactor core, the nuclear reaction will tend to shut down, not increase). This eliminates the possibility of the type of accident that occurred at Chernobyl (which was due to a positive void coefficient). However, nuclear reactors are still capable of causing smaller explosions even after complete shutdown, such as was the case of the Fukushima Daiichi nuclear disaster. In such cases, residual decay heat from the core may cause high temperatures if there is loss of coolant flow, even a day after the chain reaction has been shut down (see SCRAM). This may cause a chemical reaction between water and fuel that produces hydrogen gas which can explode after mixing with air, with severe contamination consequences, since fuel rod material may still be exposed to the atmosphere from this process. However, such explosions do not happen during a chain reaction, but rather as a result of energy from radioactive beta decay, after the fission chain reaction has been stopped.
Read more about this topic: Nuclear Chain Reaction
Famous quotes containing the words nuclear power, nuclear, power, plants, control, chain and/or reactions:
“Language is as real, as tangible, in our lives as streets, pipelines, telephone switchboards, microwaves, radioactivity, cloning laboratories, nuclear power stations.”
—Adrienne Rich (b. 1929)
“You cant be a Real Country unless you have A BEER and an airlineit helps if you have some kind of a football team, or some nuclear weapons, but at the very least you need a BEER.”
—Frank Zappa (19401993)
“Whoever is new to power is always harsh.”
—Aeschylus (525456 B.C.)
“All plants move, but they dont usually pull themselves out of the ground and chase you.”
—Philip Yordan (b. 1913)
“We human beings do have some genuine freedom of choice and therefore some effective control over our own destinies. I am not a determinist. But I also believe that the decisive choice is seldom the latest choice in the series. More often than not, it will turn out to be some choice made relatively far back in the past.”
—A.J. (Arnold Joseph)
“The name of the town isnt important. Its the one thats just twenty-eight minutes from the big city. Twenty-three if you catch the morning express. Its on a river and its got houses and stores and churches. And a main street. Nothing fancy like Broadway or Market, just plain Broadway. Drug, dry good, shoes. Those horrible little chain stores that breed like rabbits.”
—Joseph L. Mankiewicz (19091993)
“Separation anxiety is normal part of development, but individual reactions are partly explained by experience, that is, by how frequently children have been left in the care of others.... A mother who is never apart from her young child may be saying to him or her subliminally: You are only safe when Im with you.”
—Cathy Rindner Tempelsman (20th century)