Solving Polynomials
It was once believed that all roots of polynomials could be expressed in terms of radicals and elementary operations; however, while this is true for third degree polynomials (cubics) and fourth degree polynomials (quartics), the Abel-Ruffini theorem (1824) shows that this is not true in general when the degree is 5 or greater. For example, the solutions of the equation
cannot be expressed in terms of radicals. (cf. quintic equation)
For solving any equation of the nth degree numerically, to obtain a result that is arbitrarily close to being exact, see Root-finding algorithm.
Read more about this topic: nth Root
Famous quotes containing the word solving:
“Certainly, young children can begin to practice making letters and numbers and solving problems, but this should be done without workbooks. Young children need to learn initiative, autonomy, industry, and competence before they learn that answers can be right or wrong.”
—David Elkind (20th century)