In mathematics, a nowhere continuous function, also called an everywhere discontinuous function, is a function that is not continuous at any point of its domain. If f is a function from real numbers to real numbers, then f(x) is nowhere continuous if for each point x there is an ε > 0 such that for each δ > 0 we can find a point y such that |x − y| < δ and |f(x) − f(y)| ≥ ε. Therefore, no matter how close we get to any fixed point, there are even closer points at which the function takes not-nearby values.
More general definitions of this kind of function can be obtained, by replacing the absolute value by the distance function in a metric space, or by using the definition of continuity in a topological space.
Read more about Nowhere Continuous Function: Dirichlet Function, Hyperreal Characterisation
Famous quotes containing the words continuous and/or function:
“We read poetry because the poets, like ourselves, have been haunted by the inescapable tyranny of time and death; have suffered the pain of loss, and the more wearing, continuous pain of frustration and failure; and have had moods of unlooked-for release and peace. They have known and watched in themselves and others.”
—Elizabeth Drew (18871965)
“The more books we read, the clearer it becomes that the true function of a writer is to produce a masterpiece and that no other task is of any consequence.”
—Cyril Connolly (19031974)