Normed Vector Space - Normed Spaces As Quotient Spaces of Seminormed Spaces

Normed Spaces As Quotient Spaces of Seminormed Spaces

The definition of many normed spaces (in particular, Banach spaces) involves a seminorm defined on a vector space and then the normed space is defined as the quotient space by the subspace of elements of seminorm zero. For instance, with the Lp spaces, the function defined by

is a seminorm on the vector space of all functions on which the Lebesgue integral on the right hand side is defined and finite. However, the seminorm is equal to zero for any function supported on a set of Lebesgue measure zero. These functions form a subspace which we "quotient out", making them equivalent to the zero function.

Read more about this topic:  Normed Vector Space

Famous quotes containing the word spaces:

    We should read history as little critically as we consider the landscape, and be more interested by the atmospheric tints and various lights and shades which the intervening spaces create than by its groundwork and composition.
    Henry David Thoreau (1817–1862)