Finite Product Spaces
Given n seminormed spaces Xi with seminorms qi we can define the product space as
with vector addition defined as
and scalar multiplication defined as
- .
We define a new function q
for example as
- .
which is a seminorm on X. The function q is a norm if and only if all qi are norms.
More generally, for each real p≥1 we have the seminorm:
For each p this defines the same topological space.
A straightforward argument involving elementary linear algebra shows that the only finite-dimensional seminormed spaces are those arising as the product space of a normed space and a space with trivial seminorm. Consequently, many of the more interesting examples and applications of seminormed spaces occur for infinite-dimensional vector spaces.
Read more about this topic: Normed Vector Space
Famous quotes containing the words finite, product and/or spaces:
“Are not all finite beings better pleased with motions relative than absolute?”
—Henry David Thoreau (18171862)
“These facts have always suggested to man the sublime creed that the world is not the product of manifold power, but of one will, of one mind; and that one mind is everywhere active, in each ray of the star, in each wavelet of the pool; and whatever opposes that will is everywhere balked and baffled, because things are made so, and not otherwise.”
—Ralph Waldo Emerson (18031882)
“Every true man is a cause, a country, and an age; requires infinite spaces and numbers and time fully to accomplish his design;and posterity seem to follow his steps as a train of clients.”
—Ralph Waldo Emerson (18031882)