Normal Operator - Unbounded Normal Operators

Unbounded Normal Operators

The definition of normal operators naturally generalizes to some class of unbounded operators. Explicitly, a closed operator N is said to be normal if

Here, the existence of the adjoint implies that the domain of is dense, and the equality implies that the domain of equals that of, which is not necessarily the case in general.

The spectral theorem still holds for unbounded normal operators, but usually requires a different proof.

Read more about this topic:  Normal Operator

Famous quotes containing the word normal:

    I don’t mind saying in advance that in my opinion jealousy is normal and healthy. Jealousy arises out of the fact that children love. If they have no capacity to love, then they don’t show jealousy.
    D.W. Winnicott (20th century)