Normal Operator - Unbounded Normal Operators

Unbounded Normal Operators

The definition of normal operators naturally generalizes to some class of unbounded operators. Explicitly, a closed operator N is said to be normal if

Here, the existence of the adjoint implies that the domain of is dense, and the equality implies that the domain of equals that of, which is not necessarily the case in general.

The spectral theorem still holds for unbounded normal operators, but usually requires a different proof.

Read more about this topic:  Normal Operator

Famous quotes containing the word normal:

    Like sleep disturbances, some worries at separation can be expected in the second year. If you accept this, then you will avoid reacting to this anxiety as if it’s your fault. A mother who feels guilty will appear anxious to the child, as if to affirm the child’s anxiety. By contrast, a parent who understands that separation anxiety is normal is more likely to react in a way that soothes and reassures the child.
    Cathy Rindner Tempelsman (20th century)