Properties
Normal operators are characterized by the spectral theorem. A compact normal operator (in particular, a normal operator on a finite-dimensional linear space) is unitarily diagonalizable.
Let T be a bounded operator. The following are equivalent.
- T is normal.
- T* is normal.
- ||Tx|| = ||T*x|| for all x (use ).
- The selfadjoint and anti-selfadjoint parts of T (i.e., with rsp. commute .
If N is a normal operator, then N and N* have the same kernel and range. Consequently, the range of N is dense if and only if N is injective. Put in another way, the kernel of a normal operator is the orthogonal complement of its range; thus, the kernel of the operator coincides with that of for any . Every generalized eigenvalue of a normal operator is thus genuine. is an eigenvalue of a normal operator N if and only if its complex conjugate is an eigenvalue of Eigenvectors of a normal operator corresponding to different eigenvalues are orthogonal, and it stabilizes orthogonal complements to its eigenspaces . This implies the usual spectral theorem: every normal operator on a finite-dimensional space is diagonalizable by a unitary operator. There is also an infinite-dimensional generalization in terms of projection-valued measures. Residual spectrum of a normal operator is empty.
The product of normal operators that commute is again normal; this is nontrivial and follows from Fuglede's theorem, which states (in a form generalized by Putnam):
- If and are normal operators and if A is a bounded linear operator such that, then .
The operator norm of a normal operator equals its numerical radius and spectral radius.
A normal operator coincides with its Aluthge transform.
Read more about this topic: Normal Operator
Famous quotes containing the word properties:
“The reason why men enter into society, is the preservation of their property; and the end why they choose and authorize a legislative, is, that there may be laws made, and rules set, as guards and fences to the properties of all the members of the society: to limit the power, and moderate the dominion, of every part and member of the society.”
—John Locke (16321704)
“A drop of water has the properties of the sea, but cannot exhibit a storm. There is beauty of a concert, as well as of a flute; strength of a host, as well as of a hero.”
—Ralph Waldo Emerson (18031882)