Real-world Applications
For a person standing in an elevator either stationary or moving at constant velocity, the normal force on the person's feet balances the person's weight. In an elevator that is accelerating upward, the normal force is greater than the person's ground weight and so the person's perceived weight increases (making the person feel heavier). In an elevator that is accelerating downward, the normal force is less than the person's ground weight and so a passenger's perceived weight decreases. If a passenger were to stand on a "weighing scale", such as a conventional bathroom scale, while riding the elevator, the scale will be reading the normal force it delivers to the passenger's feet, and will be different than the person's ground weight if the elevator cab is accelerating up or down. The weighing scale measures normal force (which varies as the elevator cab accelerates), not gravitational force (which does not vary as the cab accelerates). It is impossible to measure true gravitational force without knowledge of the motion of one's immediate environment.
When we define upward to be the positive direction, constructing Newton's second law and solving for the normal force on a passenger yields the following equation:
Read more about this topic: Normal Force