Equivalent Properties and Examples
The normality of L/K is equivalent to each of the following properties:
- Let Ka be an algebraic closure of K containing L. Every embedding σ of L in Ka which restricts to the identity on K, satisfies σ(L) = L. In other words, σ is an automorphism of L over K.
- Every irreducible polynomial in K which has a root in L factors into linear factors in L.
- The minimal polynomial over K of every element in L splits over L.
For example, is a normal extension of, since it is a splitting field of x2 − 2. On the other hand, is not a normal extension of since the polynomial x3 − 2 has one root in it (namely, ), but not all of them (it does not have the non-real cubic roots of 2).
The fact that is not a normal extension of can also be proved using the first of the two equivalent properties from above. The field of complex algebraic numbers is an algebraic closure of containing . On the other hand
and, if ω is one of the two non-real cubic roots of 2, then the map
is an embedding of in whose restriction to is the identity. However, σ is not an automorphism of .
For any prime p, the extension is normal of degree p(p − 1). It is a splitting field of xp − 2. Here denotes any pth primitive root of unity.
Read more about this topic: Normal Extension
Famous quotes containing the words equivalent, properties and/or examples:
“Divorce is the psychological equivalent of a triple coronary bypass.”
—Mary Kay Blakely (20th century)
“The reason why men enter into society, is the preservation of their property; and the end why they choose and authorize a legislative, is, that there may be laws made, and rules set, as guards and fences to the properties of all the members of the society: to limit the power, and moderate the dominion, of every part and member of the society.”
—John Locke (16321704)
“In the examples that I here bring in of what I have [read], heard, done or said, I have refrained from daring to alter even the smallest and most indifferent circumstances. My conscience falsifies not an iota; for my knowledge I cannot answer.”
—Michel de Montaigne (15331592)