Nonlinear System - Definition

Definition

In mathematics, a linear function (or map) is one which satisfies both of the following properties:

  • additivity,
  • homogeneity,

(Additivity implies homogeneity for any rational α, and, for continuous functions, for any real α. For a complex α, homogeneity does not follow from additivity; for example, an antilinear map is additive but not homogeneous.) The conditions of additivity and homogeneity are often combined in the superposition principle

An equation written as

is called linear if is a linear map (as defined above) and nonlinear otherwise. The equation is called homogeneous if .

The definition is very general in that can be any sensible mathematical object (number, vector, function, etc.), and the function can literally be any mapping, including integration or differentiation with associated constraints (such as boundary values). If contains differentiation of, the result will be a differential equation.

Read more about this topic:  Nonlinear System

Famous quotes containing the word definition:

    ... if, as women, we accept a philosophy of history that asserts that women are by definition assimilated into the male universal, that we can understand our past through a male lens—if we are unaware that women even have a history—we live our lives similarly unanchored, drifting in response to a veering wind of myth and bias.
    Adrienne Rich (b. 1929)

    The physicians say, they are not materialists; but they are:MSpirit is matter reduced to an extreme thinness: O so thin!—But the definition of spiritual should be, that which is its own evidence. What notions do they attach to love! what to religion! One would not willingly pronounce these words in their hearing, and give them the occasion to profane them.
    Ralph Waldo Emerson (1803–1882)

    Scientific method is the way to truth, but it affords, even in
    principle, no unique definition of truth. Any so-called pragmatic
    definition of truth is doomed to failure equally.
    Willard Van Orman Quine (b. 1908)