Noncommutative Geometry - Noncommutative C*-algebras, Von Neumann Algebras

Noncommutative C*-algebras, Von Neumann Algebras

(The formal duals of) non-commutative C*-algebras are often now called non-commutative spaces. This is by analogy with the Gelfand representation, which shows that commutative C*-algebras are dual to locally compact Hausdorff spaces. In general, one can associate to any C*-algebra S a topological space Ŝ; see spectrum of a C*-algebra.

For the duality between σ-finite measure spaces and commutative von Neumann algebras, noncommutative von Neumann algebras are called non-commutative measure spaces.

Read more about this topic:  Noncommutative Geometry

Famous quotes containing the words von and/or neumann:

    Pity on the person who has become accustomed to seeing in necessity something arbitrary, who ascribes to the arbitrary some sort of reason, and even claims that following that sort of reason has religious value.
    —Johann Wolfgang Von Goethe (1749–1832)

    It means there are times when a mere scientist has gone as far as he can. When he must pause and observe respectfully while something infinitely greater assumes control.
    —Kurt Neumann (1906–1958)