Noncommutative Geometry - Noncommutative Affine and Projective Schemes

Noncommutative Affine and Projective Schemes

In analogy to the duality between affine schemes and commutative rings, we define a category of noncommutative affine schemes as the dual of the category of associative unital rings. There are certain analogues of Zariski topology in that context so that one can glue such affine schemes to more general objects.

There are also generalizations of the Cone and of the Proj of a commutative graded ring, mimicking a Serre's theorem on Proj. Namely the category of quasicoherent sheaves of O-modules on a Proj of a commutative graded algebra is equivalent to the category of graded modules over the ring localized on Serre's subcategory of graded modules of finite length; there is also analogous theorem for coherent sheaves when the algebra is Noetherian. This theorem is extended as a definition of noncommutative projective geometry by Michael Artin and J. J. Zhang, who add also some general ring-theoretic conditions (e.g. Artin-Schelter regularity).

Many properties of projective schemes extend to this context. For example, there exist an analog of the celebrated Serre duality for noncommutative projective schemes of Artin and Zhang.

A. L. Rosenberg has created a rather general relative concept of noncommutative quasicompact scheme (over a base category), abstracting the Grothendieck's study of morphisms of schemes and covers in terms of categories of quasicoherent sheaves and flat localization functors. There is also another interesting approach via localization theory, due to Fred Van Oystaeyen, Luc Willaert and Alain Verschoren, where the main concept is that of a schematic algebra.

Read more about this topic:  Noncommutative Geometry

Famous quotes containing the word schemes:

    Science is a dynamic undertaking directed to lowering the degree of the empiricism involved in solving problems; or, if you prefer, science is a process of fabricating a web of interconnected concepts and conceptual schemes arising from experiments and observations and fruitful of further experiments and observations.
    James Conant (1893–1978)