Invariants For Noncommutative Spaces
Some of the motivating questions of the theory are concerned with extending known topological invariants to formal duals of noncommutative (operator) algebras and other replacements and candidates for noncommutative spaces. One of the main starting points of the Alain Connes' direction in noncommutative geometry is his spectacular discovery (and independently by Boris Tsygan) of a very important new homology theory associated to noncommutative associative algebras and noncommutative operator algebras, namely the cyclic homology and its relations to the algebraic K-theory (primarily via Connes-Chern character map).
The theory of characteristic classes of smooth manifolds has been extended to spectral triples, employing the tools of operator K-theory and cyclic cohomology. Several generalizations of now classical index theorems allow for effective extraction of numerical invariants from spectral triples. The fundamental characteristic class in cyclic cohomology, the JLO cocycle, generalizes the classical Chern character.
Read more about this topic: Noncommutative Geometry
Famous quotes containing the word spaces:
“Though there were numerous vessels at this great distance in the horizon on every side, yet the vast spaces between them, like the spaces between the stars,far as they were distant from us, so were they from one another,nay, some were twice as far from each other as from us,impressed us with a sense of the immensity of the ocean, the unfruitful ocean, as it has been called, and we could see what proportion man and his works bear to the globe.”
—Henry David Thoreau (18171862)