Non-standard Calculus - Uniform Continuity

Uniform Continuity

A function f on an interval I is uniformly continuous if its natural extension f* in I* has the following property (see Keisler, Foundations of Infinitesimal Calculus ('07), p. 45):

for every pair of hyperreals x and y in I*, if then .

In terms of microcontinuity defined in the previous section, this can be stated as follows: a real function is uniformly continuous if its natural extension f* is microcontinuous at every point of the domain of f*.

This definition has a reduced quantifier complexity when compared with the standard (ε, δ)-definition. Namely, the epsilon-delta definition of uniform continuity requires four quantifiers, while the infinitesimal definition requires only two quantifiers. It has the same quantifier complexity as the definition of uniform continuity in terms of sequences in standard calculus, which however is not expressible in the first-order language of the real numbers.

The hyperreal definition can be illustrated by the following three examples.

Example 1: a function f is uniformly continuous on the semi-open interval (0,1], if and only if its natural extension f* is microcontinuous (in the sense of the formula above) at every positive infinitesimal, in addition to continuity at the standard points of the interval.

Example 2: a function f is uniformly continuous on the semi-open interval [0,∞) if and only if it is continuous at the standard points of the interval, and in addition, the natural extension f* is microcontinuous at every positive infinite hyperreal point.

Example 3: similarly, the failure of uniform continuity for the squaring function

is due to the absence of microcontinuity at a single infinite hyperreal point, see below.

Concerning quantifier complexity, the following remarks were made by Kevin Houston:

The number of quantifiers in a mathematical statement gives a rough measure of the statement’s complexity. Statements involving three or more quantifiers can be difficult to understand. This is the main reason why it is hard to understand the rigorous definitions of limit, convergence, continuity and differentiability in analysis as they have many quantifiers. In fact, it is the alternation of the and that causes the complexity.

Andreas Blass wrote as follows:

Often ... the nonstandard definition of a concept is simpler than the standard definition (both intuitively simpler and simpler in a technical sense, such as quantifiers over lower types or fewer alternations of quantifiers).

Read more about this topic:  Non-standard Calculus

Famous quotes containing the words uniform and/or continuity:

    An accent mark, perhaps, instead of a whole western accent—a point of punctuation rather than a uniform twang. That is how it should be worn: as a quiet point of character reference, an apt phrase of sartorial allusion—macho, sotto voce.
    Phil Patton (b. 1953)

    Every generation rewrites the past. In easy times history is more or less of an ornamental art, but in times of danger we are driven to the written record by a pressing need to find answers to the riddles of today.... In times of change and danger when there is a quicksand of fear under men’s reasoning, a sense of continuity with generations gone before can stretch like a lifeline across the scary present and get us past that idiot delusion of the exceptional Now that blocks good thinking.
    John Dos Passos (1896–1970)