Non-standard Calculus - Definition of Derivative

Definition of Derivative

The hyperreals can be constructed in the framework of Zermelo-Fraenkel set theory, the standard axiomatisation of set theory used elsewhere in mathematics. To give an intuitive idea for the hyperreal approach, note that, naively speaking, non-standard analysis postulates the existence of positive numbers ε which are infinitely small, meaning that ε is smaller than any standard positive real, yet greater than zero. Every real number x is surrounded by an infinitesimal "cloud" of hyperreal numbers infinitely close to it. To define the derivative of f at a standard real number x in this approach, one no longer needs an infinite limiting process as in standard calculus. Instead, one sets

where st is the standard part function, yielding the real number infinitely close to the hyperreal argument of st, and is the natural extension of to the hyperreals.

Read more about this topic:  Non-standard Calculus

Famous quotes containing the words definition of, definition and/or derivative:

    Definition of a classic: a book everyone is assumed to have read and often thinks they have.
    Alan Bennett (b. 1934)

    Was man made stupid to see his own stupidity?
    Is God by definition indifferent, beyond us all?
    Is the eternal truth man’s fighting soul
    Wherein the Beast ravens in its own avidity?
    Richard Eberhart (b. 1904)

    Poor John Field!—I trust he does not read this, unless he will improve by it,—thinking to live by some derivative old-country mode in this primitive new country.... With his horizon all his own, yet he a poor man, born to be poor, with his inherited Irish poverty or poor life, his Adam’s grandmother and boggy ways, not to rise in this world, he nor his posterity, till their wading webbed bog-trotting feet get talaria to their heels.
    Henry David Thoreau (1817–1862)