Non-standard Calculus - Continuity

Continuity

A real function f is continuous at a standard real number x if for every hyperreal x' infinitely close to x, the value f(x' ) is also infinitely close to f(x). This captures Cauchy's definition of continuity.

Here to be precise, f would have to be replaced by its natural hyperreal extension usually denoted f* (see discussion of Transfer principle in main article at non-standard analysis).

Using the notation for the relation of being infinitely close as above, the definition can be extended to arbitrary (standard or non-standard) points as follows:

A function f is microcontinuous at x if whenever, one has

Here the point x' is assumed to be in the domain of (the natural extension of) f.

The above requires fewer quantifiers than the (ε, δ)-definition familiar from standard elementary calculus:

f is continuous at x if for every ε > 0, there exists a δ > 0 such that for every x', whenever |xx' | < δ, one has |ƒ(x) − ƒ(x' )| < ε.

Read more about this topic:  Non-standard Calculus

Famous quotes containing the word continuity:

    Every generation rewrites the past. In easy times history is more or less of an ornamental art, but in times of danger we are driven to the written record by a pressing need to find answers to the riddles of today.... In times of change and danger when there is a quicksand of fear under men’s reasoning, a sense of continuity with generations gone before can stretch like a lifeline across the scary present and get us past that idiot delusion of the exceptional Now that blocks good thinking.
    John Dos Passos (1896–1970)

    If you associate enough with older people who do enjoy their lives, who are not stored away in any golden ghettos, you will gain a sense of continuity and of the possibility for a full life.
    Margaret Mead (1901–1978)

    Only the family, society’s smallest unit, can change and yet maintain enough continuity to rear children who will not be “strangers in a strange land,” who will be rooted firmly enough to grow and adapt.
    Salvador Minuchin (20th century)