Non-parametric Statistics - Non-parametric Models

Non-parametric models differ from parametric models in that the model structure is not specified a priori but is instead determined from data. The term non-parametric is not meant to imply that such models completely lack parameters but that the number and nature of the parameters are flexible and not fixed in advance.

  • A histogram is a simple nonparametric estimate of a probability distribution
  • Kernel density estimation provides better estimates of the density than histograms.
  • Nonparametric regression and semiparametric regression methods have been developed based on kernels, splines, and wavelets.
  • Data envelopment analysis provides efficiency coefficients similar to those obtained by multivariate analysis without any distributional assumption.

Read more about this topic:  Non-parametric Statistics

Famous quotes containing the word models:

    The greatest and truest models for all orators ... is Demosthenes. One who has not studied deeply and constantly all the great speeches of the great Athenian, is not prepared to speak in public. Only as the constant companion of Demosthenes, Burke, Fox, Canning and Webster, can we hope to become orators.
    Woodrow Wilson (1856–1924)