Non-parametric Statistics - Non-parametric Models

Non-parametric models differ from parametric models in that the model structure is not specified a priori but is instead determined from data. The term non-parametric is not meant to imply that such models completely lack parameters but that the number and nature of the parameters are flexible and not fixed in advance.

  • A histogram is a simple nonparametric estimate of a probability distribution
  • Kernel density estimation provides better estimates of the density than histograms.
  • Nonparametric regression and semiparametric regression methods have been developed based on kernels, splines, and wavelets.
  • Data envelopment analysis provides efficiency coefficients similar to those obtained by multivariate analysis without any distributional assumption.

Read more about this topic:  Non-parametric Statistics

Famous quotes containing the word models:

    Grandparents can be role models about areas that may not be significant to young children directly but that can teach them about patience and courage when we are ill, or handicapped by problems of aging. Our attitudes toward retirement, marriage, recreation, even our feelings about death and dying may make much more of an impression than we realize.
    Eda Le Shan (20th century)