Non-measurable Set - Consistent Definitions of Measure and Probability

Consistent Definitions of Measure and Probability

The Banach–Tarski paradox shows that there is no way to define volume in three dimensions unless one of the following four concessions is made:

  1. The volume of a set might change when it is rotated
  2. The volume of the union of two disjoint sets might be different from the sum of their volumes
  3. Some sets might be tagged "non-measurable" and one would need to check if a set is "measurable" before talking about its volume
  4. The axioms of ZFC (Zermelo–Fraenkel set theory with the axiom of Choice) might have to be altered

Standard measure theory takes the third option. One defines a family of measurable sets which is very rich, and almost any set explicitly defined in most branches of mathematics will be among this family. It is usually very easy to prove that a given specific subset of the geometric plane is measurable. The fundamental assumption is that a countably infinite sequence of disjoint sets satisfies the sum formula, a property called σ-additivity.

In 1970, Solovay demonstrated that the existence of a non-measurable set for Lebesgue measure is not provable within the framework of Zermelo–Fraenkel set theory in the absence of the Axiom of Choice, by showing that (assuming the consistency of an inaccessible cardinal) there is a model of ZF, called Solovay's model, in which countable choice holds, every set is Lebesgue measurable and in which the full axiom of choice fails.

The Axiom of Choice is equivalent to a fundamental result of point-set topology, Tychonoff's theorem, and also to the conjunction of two fundamental results of functional analysis, the Banach–Alaoglu theorem and the Krein–Milman theorem. It also affects the study of infinite groups to a large extent, as well as ring and order theory (see Boolean prime ideal theorem). However the axioms of determinacy and dependent choice, together, are sufficient for most geometric measure theory, potential theory, Fourier series and Fourier transforms, while making all subsets of the real line Lebesgue measurable.

Read more about this topic:  Non-measurable Set

Famous quotes containing the words consistent, definitions, measure and/or probability:

    The methodological advice to interpret in a way that optimizes agreement should not be conceived as resting on a charitable assumption about human intelligence that might turn out to be false. If we cannot find a way to interpret the utterances and other behaviour of a creature as revealing a set of beliefs largely consistent and true by our standards, we have no reason to count that creature as rational, as having beliefs, or as saying anything.
    Donald Davidson (b. 1917)

    Lord Byron is an exceedingly interesting person, and as such is it not to be regretted that he is a slave to the vilest and most vulgar prejudices, and as mad as the winds?
    There have been many definitions of beauty in art. What is it? Beauty is what the untrained eyes consider abominable.
    Edmond De Goncourt (1822–1896)

    The measure of action is the sentiment from which it proceeds. The greatest action may easily be one of the most private circumstance.
    Ralph Waldo Emerson (1803–1882)

    The source of Pyrrhonism comes from failing to distinguish between a demonstration, a proof and a probability. A demonstration supposes that the contradictory idea is impossible; a proof of fact is where all the reasons lead to belief, without there being any pretext for doubt; a probability is where the reasons for belief are stronger than those for doubting.
    Andrew Michael Ramsay (1686–1743)