Non-analytic Smooth Function - Application To Taylor Series

Application To Taylor Series

For every sequence α0, α1, α2, . . . of real or complex numbers, the following construction shows the existence of a smooth function F on the real line which has these numbers as derivatives at the origin. In particular, every sequence of numbers can appear as the coefficients of the Taylor series of a smooth function. This result is known as Borel's lemma, after Émile Borel.

With the smooth transition function g as above, define

This function h is also smooth; it equals 1 on the closed interval and vanishes outside the open interval (−2,2). Using h, define for every natural number n (including zero) the smooth function

which agrees with the monomial xn on and vanishes outside the interval (−2,2). Hence, the k-th derivative of ψn at the origin satisfies

and the boundedness theorem implies that ψn and every derivative of ψn is bounded. Therefore, the constants

involving the supremum norm of ψn and its first n derivatives, are well-defined real numbers. Define the scaled functions

By repeated application of the chain rule,

and, using the previous result for the k-th derivative of ψn at zero,

It remains to show that the function

is well defined and can be differentiated term-by-term infinitely often. To this end, observe that for every k

\sum_{n=0}^\infty\|f_n^{(k)}\|_\infty
\le \sum_{n=0}^{k+1}\frac{|\alpha_n|}{n!\,\lambda_n^{n-k}}\|\psi_n^{(k)}\|_\infty
+\sum_{n=k+2}^\infty\frac1{n!}
\underbrace{\frac1{\lambda_n^{n-k-2}}}_{\le\,1}
\underbrace{\frac{|\alpha_n|}{\lambda_n}}_{\le\,1}
\underbrace{\frac{\|\psi_n^{(k)}\|_\infty}{\lambda_n}}_{\le\,1}
<\infty,

where the remaining infinite series converges by the ratio test.

Read more about this topic:  Non-analytic Smooth Function

Famous quotes containing the words application to, application, taylor and/or series:

    It would be disingenuous, however, not to point out that some things are considered as morally certain, that is, as having sufficient certainty for application to ordinary life, even though they may be uncertain in relation to the absolute power of God.
    René Descartes (1596–1650)

    I think that a young state, like a young virgin, should modestly stay at home, and wait the application of suitors for an alliance with her; and not run about offering her amity to all the world; and hazarding their refusal.... Our virgin is a jolly one; and tho at present not very rich, will in time be a great fortune, and where she has a favorable predisposition, it seems to me well worth cultivating.
    Benjamin Franklin (1706–1790)

    Twinkle, twinkle, little star,
    How I wonder what you are!
    Up above the world so high,
    Like a diamond in the sky!
    —Ann Taylor (1782–1866)

    If the technology cannot shoulder the entire burden of strategic change, it nevertheless can set into motion a series of dynamics that present an important challenge to imperative control and the industrial division of labor. The more blurred the distinction between what workers know and what managers know, the more fragile and pointless any traditional relationships of domination and subordination between them will become.
    Shoshana Zuboff (b. 1951)