Application To Taylor Series
For every sequence α0, α1, α2, . . . of real or complex numbers, the following construction shows the existence of a smooth function F on the real line which has these numbers as derivatives at the origin. In particular, every sequence of numbers can appear as the coefficients of the Taylor series of a smooth function. This result is known as Borel's lemma, after Émile Borel.
With the smooth transition function g as above, define
This function h is also smooth; it equals 1 on the closed interval and vanishes outside the open interval (−2,2). Using h, define for every natural number n (including zero) the smooth function
which agrees with the monomial xn on and vanishes outside the interval (−2,2). Hence, the k-th derivative of ψn at the origin satisfies
and the boundedness theorem implies that ψn and every derivative of ψn is bounded. Therefore, the constants
involving the supremum norm of ψn and its first n derivatives, are well-defined real numbers. Define the scaled functions
By repeated application of the chain rule,
and, using the previous result for the k-th derivative of ψn at zero,
It remains to show that the function
is well defined and can be differentiated term-by-term infinitely often. To this end, observe that for every k
where the remaining infinite series converges by the ratio test.
Read more about this topic: Non-analytic Smooth Function
Famous quotes containing the words application to, application, taylor and/or series:
“Preaching is the expression of the moral sentiment in application to the duties of life.”
—Ralph Waldo Emerson (18031882)
“There are very few things impossible in themselves; and we do not want means to conquer difficulties so much as application and resolution in the use of means.”
—François, Duc De La Rochefoucauld (16131680)
“Iambics march from short to long;
With a leap and a bound the swift Anapaests throng;”
—Samuel Taylor Coleridge (17721834)
“The womans world ... is shown as a series of limited spaces, with the woman struggling to get free of them. The struggle is what the film is about; what is struggled against is the limited space itself. Consequently, to make its point, the film has to deny itself and suggest it was the struggle that was wrong, not the space.”
—Jeanine Basinger (b. 1936)
