Non-analytic Smooth Function - Application To Taylor Series

Application To Taylor Series

For every sequence α0, α1, α2, . . . of real or complex numbers, the following construction shows the existence of a smooth function F on the real line which has these numbers as derivatives at the origin. In particular, every sequence of numbers can appear as the coefficients of the Taylor series of a smooth function. This result is known as Borel's lemma, after Émile Borel.

With the smooth transition function g as above, define

This function h is also smooth; it equals 1 on the closed interval and vanishes outside the open interval (−2,2). Using h, define for every natural number n (including zero) the smooth function

which agrees with the monomial xn on and vanishes outside the interval (−2,2). Hence, the k-th derivative of ψn at the origin satisfies

and the boundedness theorem implies that ψn and every derivative of ψn is bounded. Therefore, the constants

involving the supremum norm of ψn and its first n derivatives, are well-defined real numbers. Define the scaled functions

By repeated application of the chain rule,

and, using the previous result for the k-th derivative of ψn at zero,

It remains to show that the function

is well defined and can be differentiated term-by-term infinitely often. To this end, observe that for every k

\sum_{n=0}^\infty\|f_n^{(k)}\|_\infty
\le \sum_{n=0}^{k+1}\frac{|\alpha_n|}{n!\,\lambda_n^{n-k}}\|\psi_n^{(k)}\|_\infty
+\sum_{n=k+2}^\infty\frac1{n!}
\underbrace{\frac1{\lambda_n^{n-k-2}}}_{\le\,1}
\underbrace{\frac{|\alpha_n|}{\lambda_n}}_{\le\,1}
\underbrace{\frac{\|\psi_n^{(k)}\|_\infty}{\lambda_n}}_{\le\,1}
<\infty,

where the remaining infinite series converges by the ratio test.

Read more about this topic:  Non-analytic Smooth Function

Famous quotes containing the words application, taylor and/or series:

    Preaching is the expression of the moral sentiment in application to the duties of life.
    Ralph Waldo Emerson (1803–1882)

    And what if all of animated nature
    Be but organic Harps diversely framed,
    That tremble into thought, as o’er them sweeps
    Plastic and vast, one intellectual breeze,
    At once the Soul of each, and God of all?
    —Samuel Taylor Coleridge (1772–1834)

    I look on trade and every mechanical craft as education also. But let me discriminate what is precious herein. There is in each of these works an act of invention, an intellectual step, or short series of steps taken; that act or step is the spiritual act; all the rest is mere repetition of the same a thousand times.
    Ralph Waldo Emerson (1803–1882)