Noether's Theorem - Basic Illustrations and Background

Basic Illustrations and Background

As an illustration, if a physical system behaves the same regardless of how it is oriented in space, its Lagrangian is rotationally symmetric: from this symmetry, Noether's theorem dictates that the angular momentum of the system be conserved, as a consequence of its laws of motion. The physical system itself need not be symmetric; a jagged asteroid tumbling in space conserves angular momentum despite its asymmetry — it is the laws of its motion that are symmetric.

As another example, if a physical process exhibits the same outcomes regardless of place or time (having the same outcome, say, somewhere in Asia on a Tuesday or in America on a Friday), then its Lagrangian is symmetric under continuous translations in space and time: by Noether's theorem, these symmetries account for the conservation laws of linear momentum and energy within this system, respectively.

Noether's theorem is important, both because of the insight it gives into conservation laws, and also as a practical calculational tool. It allows investigators to determine the conserved quantities (invariants) from the observed symmetries of a physical system. Conversely, it allows researchers to consider whole classes of hypothetical Lagrangians with given invariants, to describe a physical system. As an illustration, suppose that a new field is discovered that conserves a quantity X. Using Noether's theorem, the types of Lagrangians that conserve X through a continuous symmetry may be determined, and their fitness judged by further criteria.

There are numerous versions of Noether's theorem, with varying degrees of generality. The original version only applied to ordinary differential equations (particles) and not partial differential equations (fields). The original versions also assume that the Lagrangian only depends upon the first derivative, while later versions generalize the theorem to Lagrangians depending on the nth derivative. There are natural quantum counterparts of this theorem, expressed in the Ward–Takahashi identities. Generalizations of Noether's theorem to superspaces are also available.

Read more about this topic:  Noether's Theorem

Famous quotes containing the words basic and/or background:

    The basic test of freedom is perhaps less in what we are free to do than in what we are free not to do. It is the freedom to refrain, withdraw and abstain which makes a totalitarian regime impossible.
    Eric Hoffer (1902–1983)

    Pilate with his question “What is truth?” is gladly trotted out these days as an advocate of Christ, so as to arouse the suspicion that everything known and knowable is an illusion and to erect the cross upon that gruesome background of the impossibility of knowledge.
    Friedrich Nietzsche (1844–1900)