In mathematics, more specifically in the area of modern algebra known as ring theory, a Noetherian ring, named after Emmy Noether, is a ring in which every non-empty set of ideals has a maximal element. Equivalently, a ring is Noetherian if it satisfies the ascending chain condition on ideals; that is, given any chain:
there exists a positive integer n such that:
There are other equivalent formulations of the definition of a Noetherian ring and these are outlined later in the article.
The notion of a Noetherian ring is of fundamental importance in both commutative and noncommutative ring theory, due to the role it plays in simplifying the ideal structure of a ring. For instance, the ring of integers and the polynomial ring over a field are both Noetherian rings, and consequently, such theorems as the Lasker–Noether theorem, the Krull intersection theorem, and the Hilbert's basis theorem hold for them. Furthermore, if a ring is Noetherian, then it satisfies the descending chain condition on prime ideals. This property suggests a deep theory of dimension for Noetherian rings beginning with the notion of the Krull dimension.
Read more about Noetherian Ring: Introduction, Characterizations, Hilbert's Basis Theorem, Primary Decomposition, Uses, Examples, Properties
Famous quotes containing the word ring:
“Full fathom five thy father lies,
Of his bones are coral made;
Those are pearls that were his eyes;
Nothing of him that doth fade,
But doth suffer a sea-change
Into something rich and strange.
Sea-nymphs hourly ring his knell:
Ding-dong.
Hark! Now I hear themding-dong bell.”
—William Shakespeare (15641616)