Occurrence and Production
The abundances of the noble gases in the universe decrease as their atomic numbers increase. Helium is the most common element in the universe after hydrogen, with a mass fraction of about 24%. Most of the helium in the universe was formed during Big Bang nucleosynthesis, but the amount of helium is steadily increasing due to the fusion of hydrogen in stellar nucleosynthesis (and, to a very slight degree, the alpha decay of heavy elements). Abundances on Earth follow different trends; for example, helium is only the third most abundant noble gas in the atmosphere. The reason is that there is no primordial helium in the atmosphere; due to the small mass of the atom, helium cannot be retained by the Earth's gravitational field. Helium on Earth comes from the alpha decay of heavy elements such as uranium and thorium found in the Earth's crust, and tends to accumulate in natural gas deposits. The abundance of argon, on the other hand, is increased as a result of the beta decay of potassium-40, also found in the Earth's crust, to form argon-40, which is the most abundant isotope of argon on Earth despite being relatively rare in the Solar System. This process is the base for the potassium-argon dating method. Xenon has an unexpectedly low abundance in the atmosphere, in what has been called the missing xenon problem; one theory is that the missing xenon may be trapped in minerals inside the Earth's crust. After the discovery of xenon dioxide, a research showed that Xe can substitute for Si in the quartz. Radon is formed in the lithosphere as from the alpha decay of radium. It can seep into buildings through cracks in their foundation and accumulate in areas that are not well ventilated. Due to its high radioactivity, radon presents a significant health hazard; it is implicated in an estimated 21,000 lung cancer deaths per year in the United States alone.
Abundance | Helium | Neon | Argon | Krypton | Xenon | Radon |
---|---|---|---|---|---|---|
Solar System (for each atom of silicon) | 2343 | 2.148 | 0.1025 | 5.515 × 10−5 | 5.391 × 10−6 | – |
Earth's atmosphere (volume fraction in ppm) | 5.20 | 18.20 | 9340.00 | 1.10 | 0.09 | (0.06–18) × 10−19 |
Igneous rock (mass fraction in ppm) | 3 × 10−3 | 7 × 10−5 | 4 × 10−2 | – | – | 1.7 × 10−10 |
Gas | 2004 price (USD/m3) |
---|---|
Helium (industrial grade) | 4.20–4.90 |
Helium (laboratory grade) | 22.30–44.90 |
Argon | 2.70–8.50 |
Neon | 60–120 |
Krypton | 400–500 |
Xenon | 4000–5000 |
Neon, argon, krypton, and xenon are obtained from air using the methods of liquefaction of gases, to convert elements to a liquid state, and fractional distillation, to separate mixtures into component parts. Helium is typically produced by separating it from natural gas, and radon is isolated from the radioactive decay of radium compounds. The prices of the noble gases are influenced by their natural abundance, with argon being the cheapest and xenon the most expensive. As an example, the table to the right lists the 2004 prices in the United States for laboratory quantities of each gas.
Read more about this topic: Noble Gas
Famous quotes containing the words occurrence and/or production:
“One is absolutely sickened, not by the crimes that the wicked have committed, but by the punishments that the good have inflicted; and a community is infinitely more brutalised by the habitual employment of punishment than it is by the occasional occurrence of crime.”
—Oscar Wilde (18541900)
“... this dream that men shall cease to waste strength in competition and shall come to pool their powers of production is coming to pass all over the earth.”
—Jane Addams (18601935)