Noble Gas - Applications

Applications

Noble gases have very low boiling and melting points, which makes them useful as cryogenic refrigerants. In particular, liquid helium, which boils at 4.2 K (−268.95 °C; −452.11 °F), is used for superconducting magnets, such as those needed in nuclear magnetic resonance imaging and nuclear magnetic resonance. Liquid neon, although it does not reach temperatures as low as liquid helium, also finds use in cryogenics because it has over 40 times more refrigerating capacity than liquid helium and over three times more than liquid hydrogen.

Helium is used as a component of breathing gases to replace nitrogen, due its low solubility in fluids, especially in lipids. Gases are absorbed by the blood and body tissues when under pressure like in scuba diving, which causes an anesthetic effect known as nitrogen narcosis. Due to its reduced solubility, little helium is taken into cell membranes, and when helium is used to replace part of the breathing mixtures, such as in trimix or heliox, a decrease in the narcotic effect of the gas at depth is obtained. Helium's reduced solubility offers further advantages for the condition known as decompression sickness, or the bends. The reduced amount of dissolved gas in the body means that fewer gas bubbles form during the decrease in pressure of the ascent. Another noble gas, argon, is considered the best option for use as a drysuit inflation gas for scuba diving. Helium is also used as filling gas in nuclear fuel rods for nuclear reactors.

Since the Hindenburg disaster in 1937, helium has replaced hydrogen as a lifting gas in blimps and balloons due to its lightness and incombustibility, despite an 8.6% decrease in buoyancy.

In many applications, the noble gases are used to provide an inert atmosphere. Argon is used in the synthesis of air-sensitive compounds that are sensitive to nitrogen. Solid argon is also used for the study of very unstable compounds, such as reactive intermediates, by trapping them in an inert matrix at very low temperatures. Helium is used as the carrier medium in gas chromatography, as a filler gas for thermometers, and in devices for measuring radiation, such as the Geiger counter and the bubble chamber. Helium and argon are both commonly used to shield welding arcs and the surrounding base metal from the atmosphere during welding and cutting, as well as in other metallurgical processes and in the production of silicon for the semiconductor industry.

Noble gases are commonly used in lighting because of their lack of chemical reactivity. Argon, mixed with nitrogen, is used as a filler gas for incandescent light bulbs. Krypton is used in high-performance light bulbs, which have higher color temperatures and greater efficiency, because it reduces the rate of evaporation of the filament more than argon; halogen lamps, in particular, use krypton mixed with small amounts of compounds of iodine or bromine. The noble gases glow in distinctive colors when used inside gas-discharge lamps, such as "neon lights". These lights are called after neon but often contain other gases and phosphors, which add various hues to the orange-red color of neon. Xenon is commonly used in xenon arc lamps which, due to their nearly continuous spectrum that resembles daylight, find application in film projectors and as automobile headlamps.

The noble gases are used in excimer lasers, which are based on short-lived electronically excited molecules known as excimers. The excimers used for lasers may be noble gas dimers such as Ar2, Kr2 or Xe2, or more commonly, the noble gas is combined with a halogen in excimers such as ArF, KrF, XeF, or XeCl. These lasers produce ultraviolet light which, due to its short wavelength (193 nm for ArF and 248 nm for KrF), allows for high-precision imaging. Excimer lasers have many industrial, medical, and scientific applications. They are used for microlithography and microfabrication, which are essential for integrated circuit manufacture, and for laser surgery, including laser angioplasty and eye surgery.

Some noble gases have direct application in medicine. Helium is sometimes used to improve the ease of breathing of asthma sufferers. Xenon is used as an anesthetic because of its high solubility in lipids, which makes it more potent than the usual nitrous oxide, and because it is readily eliminated from the body, resulting in faster recovery. Xenon finds application in medical imaging of the lungs through hyperpolarized MRI. Radon, which is highly radioactive and is only available in minute amounts, is used in radiotherapy.

Read more about this topic:  Noble Gas