Proof
Suppose the state of a quantum system A, which we wish to copy, is (see bra-ket notation). In order to make a copy, we take a system B with the same state space and initial state . The initial, or blank, state must be independent of, of which we have no prior knowledge. The composite system is then described by the tensor product, and its state is
There are only two ways to manipulate the composite system. We could perform an observation, which irreversibly collapses the system into some eigenstate of the observable, corrupting the information contained in the qubit. This is obviously not what we want. Alternatively, we could control the Hamiltonian of the system, and thus the time evolution operator U (for a time independent Hamiltonian, where is called the generator of translations in time) up to some fixed time interval, which yields a unitary operator. Then U acts as a copier provided that
for all possible states in the state space (including ). Since U is unitary, it preserves the inner product:
and since quantum mechanical states are assumed to be normalized, it follows that
This implies that either (in which case ) or is orthogonal to (in which case ). However, this is not the case for two arbitrary states. While orthogonal states in a specifically chosen basis, for example:
and
fit the requirement that, this result does not hold for more general quantum states. Apparently U cannot clone a general quantum state. This proves the no-cloning theorem.
Read more about this topic: No-cloning Theorem
Famous quotes containing the word proof:
“The insatiable thirst for everything which lies beyond, and which life reveals, is the most living proof of our immortality.”
—Charles Baudelaire (18211867)
“When children feel good about themselves, its like a snowball rolling downhill. They are continually able to recognize and integrate new proof of their value as they grow and mature.”
—Stephanie Martson (20th century)
“He who has never failed somewhere, that man can not be great. Failure is the true test of greatness. And if it be said, that continual success is a proof that a man wisely knows his powers,it is only to be added, that, in that case, he knows them to be small.”
—Herman Melville (18191891)