Nilpotent Group - Explanation of Term

Explanation of Term

Nilpotent groups are so called because the "adjoint action" of any element is nilpotent, meaning that for a nilpotent group G of nilpotence degree n and an element g, the function defined by (where is the commutator of g and x) is nilpotent in the sense that the nth iteration of the function is trivial: for all in .

This is not a defining characteristic of nilpotent groups: groups for which is nilpotent of degree n (in the sense above) are called n-Engel groups, and need not be nilpotent in general. They are proven to be nilpotent if they have finite order, and are conjectured to be nilpotent as long as they are finitely generated.

An abelian group is precisely one for which the adjoint action is not just nilpotent but trivial (a 1-Engel group).

Read more about this topic:  Nilpotent Group

Famous quotes containing the words explanation of, explanation and/or term:

    Herein is the explanation of the analogies, which exist in all the arts. They are the re-appearance of one mind, working in many materials to many temporary ends. Raphael paints wisdom, Handel sings it, Phidias carves it, Shakspeare writes it, Wren builds it, Columbus sails it, Luther preaches it, Washington arms it, Watt mechanizes it. Painting was called “silent poetry,” and poetry “speaking painting.” The laws of each art are convertible into the laws of every other.
    Ralph Waldo Emerson (1803–1882)

    There is no explanation for evil. It must be looked upon as a necessary part of the order of the universe. To ignore it is childish, to bewail it senseless.
    W. Somerset Maugham (1874–1965)

    The term clinical depression finds its way into too many conversations these days. One has a sense that a catastrophe has occurred in the psychic landscape.
    Leonard Cohen (b. 1934)