Definition
The definition uses the idea, explained on its own page, of a central series for a group. The following are equivalent formulations:
- A nilpotent group is one that has a central series of finite length.
- A nilpotent group is one whose lower central series terminates in the trivial subgroup after finitely many steps.
- A nilpotent group is one whose upper central series terminates in the whole group after finitely many steps.
For a nilpotent group, the smallest n such that G has a central series of length n is called the nilpotency class of G ; and G is said to be nilpotent of class n. (By definition, the length is n if there are n + 1 different subgroups in the series, including the trivial subgroup and the whole group.)
Equivalently, the nilpotency class of G equals the length of the lower central series or upper central series. If a group has nilpotency class at most m, then it is sometimes called a nil-m group.
It follows immediately from any of the above forms of the definition of nilpotency, that the trivial group is the unique group of nilpotency class 0, and groups of nilpotency class 1 are exactly the non-trivial abelian groups.
Read more about this topic: Nilpotent Group
Famous quotes containing the word definition:
“... we all know the wags definition of a philanthropist: a man whose charity increases directly as the square of the distance.”
—George Eliot [Mary Ann (or Marian)
“... if, as women, we accept a philosophy of history that asserts that women are by definition assimilated into the male universal, that we can understand our past through a male lensif we are unaware that women even have a historywe live our lives similarly unanchored, drifting in response to a veering wind of myth and bias.”
—Adrienne Rich (b. 1929)
“Its a rare parent who can see his or her child clearly and objectively. At a school board meeting I attended . . . the only definition of a gifted child on which everyone in the audience could agree was mine.”
—Jane Adams (20th century)