Newton's Method - Description

Description

The idea of the method is as follows: one starts with an initial guess which is reasonably close to the true root, then the function is approximated by its tangent line (which can be computed using the tools of calculus), and one computes the x-intercept of this tangent line (which is easily done with elementary algebra). This x-intercept will typically be a better approximation to the function's root than the original guess, and the method can be iterated.

Suppose ƒ : → R is a differentiable function defined on the interval with values in the real numbers R. The formula for converging on the root can be easily derived. Suppose we have some current approximation xn. Then we can derive the formula for a better approximation, xn+1 by referring to the diagram on the right. We know from the definition of the derivative at a given point that it is the slope of a tangent at that point.

That is

Here, f ' denotes the derivative of the function f. Then by simple algebra we can derive

We start the process off with some arbitrary initial value x0. (The closer to the zero, the better. But, in the absence of any intuition about where the zero might lie, a "guess and check" method might narrow the possibilities to a reasonably small interval by appealing to the intermediate value theorem.) The method will usually converge, provided this initial guess is close enough to the unknown zero, and that ƒ'(x0) ≠ 0. Furthermore, for a zero of multiplicity 1, the convergence is at least quadratic (see rate of convergence) in a neighbourhood of the zero, which intuitively means that the number of correct digits roughly at least doubles in every step. More details can be found in the analysis section below.

The Householder's methods are similar but have higher order for even faster convergence. However, the extra computations required for each step can slow down the overall performance relative to Newton's method, particularly if f or its derivatives are computationally expensive to evaluate.

Read more about this topic:  Newton's Method

Famous quotes containing the word description:

    Everything to which we concede existence is a posit from the standpoint of a description of the theory-building process, and simultaneously real from the standpoint of the theory that is being built. Nor let us look down on the standpoint of the theory as make-believe; for we can never do better than occupy the standpoint of some theory or other, the best we can muster at the time.
    Willard Van Orman Quine (b. 1908)

    An intentional object is given by a word or a phrase which gives a description under which.
    Gertrude Elizabeth Margaret Anscombe (b. 1919)

    The Sage of Toronto ... spent several decades marveling at the numerous freedoms created by a “global village” instantly and effortlessly accessible to all. Villages, unlike towns, have always been ruled by conformism, isolation, petty surveillance, boredom and repetitive malicious gossip about the same families. Which is a precise enough description of the global spectacle’s present vulgarity.
    Guy Debord (b. 1931)