Analysis
Suppose that the function ƒ has a zero at α, i.e., ƒ(α) = 0.
If f is continuously differentiable and its derivative is nonzero at α, then there exists a neighborhood of α such that for all starting values x0 in that neighborhood, the sequence {xn} will converge to α.
If the function is continuously differentiable and its derivative is not 0 at α and it has a second derivative at α then the convergence is quadratic or faster. If the second derivative is not 0 at α then the convergence is merely quadratic. If the third derivative exists and is bounded in a neighborhood of α, then:
where
If the derivative is 0 at α, then the convergence is usually only linear. Specifically, if ƒ is twice continuously differentiable, ƒ '(α) = 0 and ƒ ''(α) ≠ 0, then there exists a neighborhood of α such that for all starting values x0 in that neighborhood, the sequence of iterates converges linearly, with rate log10 2 (Süli & Mayers, Exercise 1.6). Alternatively if ƒ '(α) = 0 and ƒ '(x) ≠ 0 for x ≠ 0, x in a neighborhood U of α, α being a zero of multiplicity r, and if ƒ ∈ Cr(U) then there exists a neighborhood of α such that for all starting values x0 in that neighborhood, the sequence of iterates converges linearly.
However, even linear convergence is not guaranteed in pathological situations.
In practice these results are local, and the neighborhood of convergence is not known in advance. But there are also some results on global convergence: for instance, given a right neighborhood U+ of α, if f is twice differentiable in U+ and if, in U+, then, for each x0 in U+ the sequence xk is monotonically decreasing to α.
Read more about this topic: Newton's Method
Famous quotes containing the word analysis:
“Ask anyone committed to Marxist analysis how many angels on the head of a pin, and you will be asked in return to never mind the angels, tell me who controls the production of pins.”
—Joan Didion (b. 1934)