Newton's Method - Analysis

Analysis

Suppose that the function ƒ has a zero at α, i.e., ƒ(α) = 0.

If f is continuously differentiable and its derivative is nonzero at α, then there exists a neighborhood of α such that for all starting values x0 in that neighborhood, the sequence {xn} will converge to α.

If the function is continuously differentiable and its derivative is not 0 at α and it has a second derivative at α then the convergence is quadratic or faster. If the second derivative is not 0 at α then the convergence is merely quadratic. If the third derivative exists and is bounded in a neighborhood of α, then:

where

If the derivative is 0 at α, then the convergence is usually only linear. Specifically, if ƒ is twice continuously differentiable, ƒ '(α) = 0 and ƒ ''(α) ≠ 0, then there exists a neighborhood of α such that for all starting values x0 in that neighborhood, the sequence of iterates converges linearly, with rate log10 2 (Süli & Mayers, Exercise 1.6). Alternatively if ƒ '(α) = 0 and ƒ '(x) ≠ 0 for x ≠ 0, x in a neighborhood U of α, α being a zero of multiplicity r, and if ƒCr(U) then there exists a neighborhood of α such that for all starting values x0 in that neighborhood, the sequence of iterates converges linearly.

However, even linear convergence is not guaranteed in pathological situations.

In practice these results are local, and the neighborhood of convergence is not known in advance. But there are also some results on global convergence: for instance, given a right neighborhood U+ of α, if f is twice differentiable in U+ and if, in U+, then, for each x0 in U+ the sequence xk is monotonically decreasing to α.

Read more about this topic:  Newton's Method

Famous quotes containing the word analysis:

    ... the big courageous acts of life are those one never hears of and only suspects from having been through like experience. It takes real courage to do battle in the unspectacular task. We always listen for the applause of our co-workers. He is courageous who plods on, unlettered and unknown.... In the last analysis it is this courage, developing between man and his limitations, that brings success.
    Alice Foote MacDougall (1867–1945)

    Cubism had been an analysis of the object and an attempt to put it before us in its totality; both as analysis and as synthesis, it was a criticism of appearance. Surrealism transmuted the object, and suddenly a canvas became an apparition: a new figuration, a real transfiguration.
    Octavio Paz (b. 1914)