Newton's Law of Universal Gravitation - Vector Form

Vector Form

Newton's law of universal gravitation can be written as a vector equation to account for the direction of the gravitational force as well as its magnitude. In this formula, quantities in bold represent vectors.


\mathbf{F}_{12} =
- G {m_1 m_2 \over {\vert \mathbf{r}_{12} \vert}^2}
\, \mathbf{\hat{r}}_{12}

where

F12 is the force applied on object 2 due to object 1,
G is the gravitational constant,
m1 and m2 are respectively the masses of objects 1 and 2,
|r12| = |r2r1| is the distance between objects 1 and 2, and
is the unit vector from object 1 to 2.

It can be seen that the vector form of the equation is the same as the scalar form given earlier, except that F is now a vector quantity, and the right hand side is multiplied by the appropriate unit vector. Also, it can be seen that F12 = −F21.

Read more about this topic:  Newton's Law Of Universal Gravitation

Famous quotes containing the word form:

    Upon the whole, necessity is something, that exists in the mind, not in objects; nor is it possible for us ever to form the most distant idea of it, consider’d as a quality in bodies. Either we have no idea of necessity, or necessity is nothing but that determination of thought to pass from cause to effects and effects to causes, according to their experienc’d union.
    David Hume (1711–1776)