Newton's Law of Universal Gravitation - Problems With Newton's Theory

Problems With Newton's Theory

Newton's description of gravity is sufficiently accurate for many practical purposes and is therefore widely used. Deviations from it are small when the dimensionless quantities φ/c2 and (v/c)2 are both much less than one, where φ is the gravitational potential, v is the velocity of the objects being studied, and c is the speed of light. For example, Newtonian gravity provides an accurate description of the Earth/Sun system, since

\frac{\Phi}{c^2}=\frac{GM_\mathrm{sun}}{r_\mathrm{orbit}c^2} \sim 10^{-8},
\quad \left(\frac{v_\mathrm{Earth}}{c}\right)^2=\left(\frac{2\pi r_\mathrm{orbit}}{(1\ \mathrm{yr})c}\right)^2 \sim 10^{-8}

where rorbit is the radius of the Earth's orbit around the Sun.

In situations where either dimensionless parameter is large, then general relativity must be used to describe the system. General relativity reduces to Newtonian gravity in the limit of small potential and low velocities, so Newton's law of gravitation is often said to be the low-gravity limit of general relativity.

Read more about this topic:  Newton's Law Of Universal Gravitation

Famous quotes containing the words problems, newton and/or theory:

    If we fail to meet our problems here, no one else in the world will do so. If we fail, the heart goes out of progressives throughout the world.
    Eleanor Roosevelt (1884–1962)

    I frame no hypotheses; for whatever is not deduced from the phenomena is to be called a hypothesis; and hypotheses, whether metaphysical or physical, whether of occult qualities or mechanical, have no place in experimental philosophy.
    —Isaac Newton (1642–1727)

    There never comes a point where a theory can be said to be true. The most that one can claim for any theory is that it has shared the successes of all its rivals and that it has passed at least one test which they have failed.
    —A.J. (Alfred Jules)