Newtonian Dynamics - Relation To Lagrange Equations

Relation To Lagrange Equations

Mechanical systems with constraints are usually described by Lagrange equations:


\frac{dq^s}{dt}=w^s,\qquad\frac{d}{dt}\left(\frac{\partial T}{\partial w^s}\right)-\frac{\partial T}{\partial q^s}=Q_s,\qquad s=1,\,\ldots,\,n,

(16)

where is the kinetic energy the constrained dynamical system given by the formula (12). The quantities in (16) are the inner covariant components of the tangent force vector (see (13) and (14)). They are produced from the inner contravariant components of the vector by means of the standard index lowering procedure using the metric (11):


Q_s=\sum^n_{r=1}g_{sr}\,F^r,\qquad s=1,\,\ldots,\,n,

(17)

The equations (16) are equivalent to the equations (15). However, the metric (11) and other geometric features of the configuration manifold are not explicit in (16). The metric (11) can be recovered from the kinetic energy by means of the formula


g_{ij}=\frac{\partial^2T}{\partial w^i\,\partial w^j}.

(18)

Read more about this topic:  Newtonian Dynamics

Famous quotes containing the words relation to and/or relation:

    In relation to God, we are like a thief who has burgled the house of a kindly householder and been allowed to keep some of the gold. From the point of view of the lawful owner this gold is a gift; From the point of view of the burglar it is a theft. He must go and give it back. It is the same with our existence. We have stolen a little of God’s being to make it ours. God has made us a gift of it. But we have stolen it. We must return it.
    Simone Weil (1909–1943)

    Any relation to the land, the habit of tilling it, or mining it, or even hunting on it, generates the feeling of patriotism. He who keeps shop on it, or he who merely uses it as a support to his desk and ledger, or to his manufactory, values it less.
    Ralph Waldo Emerson (1803–1882)