Newtonian Dynamics - Relation To Lagrange Equations

Relation To Lagrange Equations

Mechanical systems with constraints are usually described by Lagrange equations:


\frac{dq^s}{dt}=w^s,\qquad\frac{d}{dt}\left(\frac{\partial T}{\partial w^s}\right)-\frac{\partial T}{\partial q^s}=Q_s,\qquad s=1,\,\ldots,\,n,

(16)

where is the kinetic energy the constrained dynamical system given by the formula (12). The quantities in (16) are the inner covariant components of the tangent force vector (see (13) and (14)). They are produced from the inner contravariant components of the vector by means of the standard index lowering procedure using the metric (11):


Q_s=\sum^n_{r=1}g_{sr}\,F^r,\qquad s=1,\,\ldots,\,n,

(17)

The equations (16) are equivalent to the equations (15). However, the metric (11) and other geometric features of the configuration manifold are not explicit in (16). The metric (11) can be recovered from the kinetic energy by means of the formula


g_{ij}=\frac{\partial^2T}{\partial w^i\,\partial w^j}.

(18)

Read more about this topic:  Newtonian Dynamics

Famous quotes containing the words relation to and/or relation:

    Concord is just as idiotic as ever in relation to the spirits and their knockings. Most people here believe in a spiritual world ... in spirits which the very bullfrogs in our meadows would blackball. Their evil genius is seeing how low it can degrade them. The hooting of owls, the croaking of frogs, is celestial wisdom in comparison.
    Henry David Thoreau (1817–1862)

    To be a good enough parent one must be able to feel secure in one’s parenthood, and one’s relation to one’s child...The security of the parent about being a parent will eventually become the source of the child’s feeling secure about himself.
    Bruno Bettelheim (20th century)