Newtonian Dynamics - Relation To Lagrange Equations

Relation To Lagrange Equations

Mechanical systems with constraints are usually described by Lagrange equations:


\frac{dq^s}{dt}=w^s,\qquad\frac{d}{dt}\left(\frac{\partial T}{\partial w^s}\right)-\frac{\partial T}{\partial q^s}=Q_s,\qquad s=1,\,\ldots,\,n,

(16)

where is the kinetic energy the constrained dynamical system given by the formula (12). The quantities in (16) are the inner covariant components of the tangent force vector (see (13) and (14)). They are produced from the inner contravariant components of the vector by means of the standard index lowering procedure using the metric (11):


Q_s=\sum^n_{r=1}g_{sr}\,F^r,\qquad s=1,\,\ldots,\,n,

(17)

The equations (16) are equivalent to the equations (15). However, the metric (11) and other geometric features of the configuration manifold are not explicit in (16). The metric (11) can be recovered from the kinetic energy by means of the formula


g_{ij}=\frac{\partial^2T}{\partial w^i\,\partial w^j}.

(18)

Read more about this topic:  Newtonian Dynamics

Famous quotes containing the words relation to and/or relation:

    A theory of the middle class: that it is not to be determined by its financial situation but rather by its relation to government. That is, one could shade down from an actual ruling or governing class to a class hopelessly out of relation to government, thinking of gov’t as beyond its control, of itself as wholly controlled by gov’t. Somewhere in between and in gradations is the group that has the sense that gov’t exists for it, and shapes its consciousness accordingly.
    Lionel Trilling (1905–1975)

    Every word was once a poem. Every new relation is a new word.
    Ralph Waldo Emerson (1803–1882)