Newtonian Dynamics - Newton's Second Law in A Multidimensional Space

Newton's Second Law in A Multidimensional Space

Let's consider particles with masses in the regular three-dimensional Euclidean space. Let be their radius-vectors in some inertial coordinate system. Then the motion of these particles is governed by Newton's second law applied to each of them


\frac{d\mathbf r_i}{dt}=\mathbf v_i,\qquad\frac{d\mathbf v_i}{dt}=\frac{\mathbf F_i(\mathbf r_1,\ldots,\mathbf r_N,\mathbf v_1,\ldots,\mathbf v_N,t)}{m_i},\quad i=1,\ldots,N.

(1)

The three-dimensional radius-vectors can be built into a single -dimensional radius-vector. Similarly, three-dimensional velocity vectors can be built into a single -dimensional velocity vector:


\mathbf r=\begin{Vmatrix}
\mathbf r_1\\ \vdots\\ \mathbf r_N\end{Vmatrix},\qquad\qquad
\mathbf v=\begin{Vmatrix}
\mathbf v_1\\ \vdots\\ \mathbf v_N\end{Vmatrix}.

(2)

In terms of the multidimensional vectors (2) the equations (1) are written as


\frac{d\mathbf r}{dt}=\mathbf v,\qquad\frac{d\mathbf v}{dt}=\mathbf F(\mathbf r,\mathbf v,t),

(3)

i. e they take the form of Newton's second law applied to a single particle with the unit mass .

Definition. The equations (3) are called the equations of a Newtonian dynamical system in a flat multidimensional Euclidean space, which is called the configuration space of this system. Its points are marked by the radius-vector . The space whose points are marked by the pair of vectors is called the phase space of the dynamical system (3).

Read more about this topic:  Newtonian Dynamics

Famous quotes containing the words newton, law and/or space:

    The next Augustan age will dawn on the other side of the Atlantic. There will, perhaps, be a Thucydides at Boston, a Xenophon at New York, and, in time, a Virgil at Mexico, and a Newton at Peru. At last, some curious traveller from Lima will visit England and give a description of the ruins of St. Paul’s, like the editions of Balbec and Palmyra.
    Horace Walpole (1717–1797)

    Judge—A law student who marks his own examination-papers.
    —H.L. (Henry Lewis)

    The limerick packs laughs anatomical
    Into space that is quite economical,
    But the good ones I’ve seen
    So seldom are clean
    And the clean ones so seldom are comical.
    Anonymous.