Newtonian Dynamics - Newton's Second Law in A Curved Space

Newton's Second Law in A Curved Space

The Newtonian dynamical system (3) constrained to the configuration manifold by the constraint equations (6) is described by the differential equations


\frac{dq^s}{dt}=w^s,\qquad\frac{d w^s}{dt}+\sum^n_{i=1}\sum^n_{j=1}\Gamma^s_{ij}\,w^i\,w^j=F^s,\qquad s=1,\,\ldots,\,n,

(15)

where are Christoffel symbols of the metric connection produced by the Riemannian metric (11).

Read more about this topic:  Newtonian Dynamics

Famous quotes containing the words newton, law, curved and/or space:

    Glorious things of thee are spoken, Zion city of our God!
    He, whose word cannot be broken, Form’d for thee his own abode:
    On the rock of ages founded, What can shake thy sure repose?
    With salvation’s walls surrounded Thou may’st smile at all thy foes.
    —John Newton (1725–1807)

    They are free, but not entirely free. For Law is despot over them, and they fear him much more than your men fear you.
    Herodotus (c. 484–424 B.C.)

    They are not flat surfaces
    Having curved outlines.
    They are round
    Tapering toward the top.
    Wallace Stevens (1879–1955)

    Shall we now
    Contaminate our fingers with base bribes,
    And sell the mighty space of our large honors
    For so much trash as may be grasped thus?
    I had rather be a dog and bay the moon
    Than such a Roman.
    William Shakespeare (1564–1616)