Newtonian Dynamics - Embedding and The Induced Riemannian Metric

Embedding and The Induced Riemannian Metric

Geometrically, the vector-function (7) implements an embedding of the comfiguration space of the constrained Newtonian dynamical system into the -dimensional flat comfiguration space of the unconstrained Newtonian dynamical system (3). Due to this embedding the Euclidean structure of the ambient space induces the Riemannian metric onto the manifold . The components of the metric tensor of this induced metric are given by the formula

\displaystyle g_{ij}=\left(\frac{\partial\mathbf r}{\partial q^i},\frac{\partial\mathbf r}{\partial q^j}\right)
,

(11)

where is the scalar product associated with the Euclidean structure (4).

Read more about this topic:  Newtonian Dynamics

Famous quotes containing the word induced:

    The classicist, and the naturalist who has much in common with him, refuse to see in the highest works of art anything but the exercise of judgement, sensibility, and skill. The romanticist cannot be satisfied with such a normal standard; for him art is essentially irrational—an experience beyond normality, sometimes destructive of normality, and at the very least evocative of that state of wonder which is the state of mind induced by the immediately inexplicable.
    Sir Herbert Read (1893–1968)