Newton Polynomial - Taylor Polynomial

Taylor Polynomial

The limit of the Newton polynomial if all nodes coincide is a Taylor polynomial, because the divided differences become derivatives.

 \lim_{(x_0,\dots,x_n)\to(z,\dots,z)} f + f\cdot(\xi-x_0) + \dots + f\cdot(\xi-x_0)\cdot\dots\cdot(\xi-x_{n-1})
 = f(z) + f'(z)\cdot(\xi-z) + \dots + \frac{f^{(n)}(z)}{n!}\cdot(\xi-z)^n

Read more about this topic:  Newton Polynomial

Famous quotes containing the word taylor:

    Oh Sleep! it is a gentle thing,
    Beloved from pole to pole!
    To Mary Queen the praise be given!
    She sent the gentle sleep from Heaven,
    That slid into my soul.
    —Samuel Taylor Coleridge (1772–1834)