Newton Polynomial - Taylor Polynomial

Taylor Polynomial

The limit of the Newton polynomial if all nodes coincide is a Taylor polynomial, because the divided differences become derivatives.

 \lim_{(x_0,\dots,x_n)\to(z,\dots,z)} f + f\cdot(\xi-x_0) + \dots + f\cdot(\xi-x_0)\cdot\dots\cdot(\xi-x_{n-1})
 = f(z) + f'(z)\cdot(\xi-z) + \dots + \frac{f^{(n)}(z)}{n!}\cdot(\xi-z)^n

Read more about this topic:  Newton Polynomial

Famous quotes containing the word taylor:

    the eave-drops fall
    Heard only in the trances of the blast,
    Or if the secret ministry of frost
    Shall hang them up in silent icicles,
    Quietly shining to the quiet Moon.
    —Samuel Taylor Coleridge (1772–1834)